[PDF] Elements Of Dimensionality Reduction And Manifold Learning - eBooks Review

Elements Of Dimensionality Reduction And Manifold Learning


Elements Of Dimensionality Reduction And Manifold Learning
DOWNLOAD

Download Elements Of Dimensionality Reduction And Manifold Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elements Of Dimensionality Reduction And Manifold Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Elements Of Dimensionality Reduction And Manifold Learning


Elements Of Dimensionality Reduction And Manifold Learning
DOWNLOAD
Author : Benyamin Ghojogh
language : en
Publisher: Springer Nature
Release Date : 2023-02-02

Elements Of Dimensionality Reduction And Manifold Learning written by Benyamin Ghojogh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-02 with Computers categories.


Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, and kernels are also explained to ensure a comprehensive understanding of the algorithms. The tools introduced in this book can be applied to various applications involving feature extraction, image processing, computer vision, and signal processing. This book is applicable to a wide audience who would like to acquire a deep understanding of the various ways to extract, transform, and understand the structure of data. The intended audiences are academics, students, and industry professionals. Academic researchers and students can use this book as a textbook for machine learning and dimensionality reduction. Data scientists, machine learning scientists, computer vision scientists, and computer scientists can use this book as a reference. It can also be helpful to statisticians in the field of statistical learning and applied mathematicians in the fields of manifolds and subspace analysis. Industry professionals, including applied engineers, data engineers, and engineers in various fields of science dealing with machine learning, can use this as a guidebook for feature extraction from their data, as the raw data in industry often require preprocessing. The book is grounded in theory but provides thorough explanations and diverse examples to improve the reader’s comprehension of the advanced topics. Advanced methods are explained in a step-by-step manner so that readers of all levels can follow the reasoning and come to a deep understanding of the concepts. This book does not assume advanced theoretical background in machine learning and provides necessary background, although an undergraduate-level background in linear algebra and calculus is recommended.



New Insights On Principal Component Analysis


New Insights On Principal Component Analysis
DOWNLOAD
Author : Fausto Pedro García Márquez
language : en
Publisher: BoD – Books on Demand
Release Date : 2024-02-07

New Insights On Principal Component Analysis written by Fausto Pedro García Márquez and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-07 with Computers categories.


This book on Principal Component Analysis (PCA) extensively explores the core analyses and case studies within this field, incorporating the latest advancements. Each chapter delves into various disciplines like engineering, administration, economics, and technology, showcasing diverse applications and the utility of PCA. The book emphasizes the integration of PCA with other algorithms and methodologies, highlighting the enhancements achieved through combined approaches. Moreover, the book elucidates updated versions or iterations of PCA, detailing their descriptions and practical applications.



Dimensionality Reduction Feature Extraction And Manifold In Machine Learning


Dimensionality Reduction Feature Extraction And Manifold In Machine Learning
DOWNLOAD
Author : Dr. Neha Sharma
language : en
Publisher: Xoffencerpublication
Release Date : 2023-04-24

Dimensionality Reduction Feature Extraction And Manifold In Machine Learning written by Dr. Neha Sharma and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-24 with Computers categories.


An illustration of a common type of brain-computer interface system (photo courtesy of Gerwin Schalk, Wadsworth Centre, New York) The term "Brain Computer Interfaces," sometimes referred to as BCIs for short, describes a family of technologies that make it possible for people and computers to interact with one another in a direct manner. The word "Brain Computer Interfaces" is shortened as "BCIs" for the shorter version. Brain-computer interfaces, often known as BCIs, offer an alternate means of communication and control to more traditional Human Computer Interfaces (HCIs). These BCIs do not require the user to move their muscles in order to interact with the computer. As a consequence of this, they are particularly useful in applications such as supporting people who have impairments, recovering human cognitive or sensorymotor processes, and improving performance in areas that are pertinent to the tasks at hand. A typical BCI system is comprised of a module for acquiring brain activity, another module for signal preprocessing and feature extraction, a module for classifying mental states or making estimates, and a module for controlling output.. These four modules are referred to together as the BCI stack. Once it was shown that brain impulses might be used to create a mental prosbook, non-invasive brain-computer interfaces, often known as BCIs, have attracted an increasing amount of interest. Brainmachine interfaces (BMIs) are another name for brain-computer interfaces (BCIs). A significant amount of research has been conducted in a wide variety of domains and fields of study. A non-invasive brain-computer interface (BCI) that makes use of electroencephalography (EEG) signals recorded from the scalp may provide people with control over numerous parameters of movement, as Wolpaw and McFarland have demonstrated. It has been demonstrated by that it is possible, with the use of the visual P300 Event Related Potential (ERP), to choose letters that are shown on the screen of a computer.



Principles Of Machine Learning


Principles Of Machine Learning
DOWNLOAD
Author : Wenmin Wang
language : en
Publisher: Springer Nature
Release Date : 2024-10-26

Principles Of Machine Learning written by Wenmin Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-26 with Mathematics categories.


Conducting an in-depth analysis of machine learning, this book proposes three perspectives for studying machine learning: the learning frameworks, learning paradigms, and learning tasks. With this categorization, the learning frameworks reside within the theoretical perspective, the learning paradigms pertain to the methodological perspective, and the learning tasks are situated within the problematic perspective. Throughout the book, a systematic explication of machine learning principles from these three perspectives is provided, interspersed with some examples. The book is structured into four parts, encompassing a total of fifteen chapters. The inaugural part, titled “Perspectives,” comprises two chapters: an introductory exposition and an exploration of the conceptual foundations. The second part, “Frameworks”: subdivided into five chapters, each dedicated to the discussion of five seminal frameworks: probability, statistics, connectionism, symbolism, and behaviorism. Continuing further, the third part, “Paradigms,” encompasses four chapters that explain the three paradigms of supervised learning, unsupervised learning, and reinforcement learning, and narrating several quasi-paradigms emerged in machine learning. Finally, the fourth part, “Tasks”: comprises four chapters, delving into the prevalent learning tasks of classification, regression, clustering, and dimensionality reduction. This book provides a multi-dimensional and systematic interpretation of machine learning, rendering it suitable as a textbook reference for senior undergraduates or graduate students pursuing studies in artificial intelligence, machine learning, data science, computer science, and related disciplines. Additionally, it serves as a valuable reference for those engaged in scientific research and technical endeavors within the realm of machine learning. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.



Advancing Vlsi Through Machine Learning


Advancing Vlsi Through Machine Learning
DOWNLOAD
Author : Abhishek Narayan Tripathi
language : en
Publisher: CRC Press
Release Date : 2025-03-31

Advancing Vlsi Through Machine Learning written by Abhishek Narayan Tripathi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-31 with Technology & Engineering categories.


This book explores the synergy between very large-scale integration (VLSI) and machine learning (ML) and its applications across various domains. It investigates how ML techniques can enhance the design and testing of VLSI circuits, improve power efficiency, optimize layouts, and enable novel architectures. This book bridges the gap between VLSI and ML, showcasing the potential of this integration in creating innovative electronic systems, advancing computing capabilities, and paving the way for a new era of intelligent devices and technologies. Additionally, it covers how VLSI technologies can accelerate ML algorithms, enabling more efficient and powerful data processing and inference engines. It explores both hardware and software aspects, covering topics like hardware accelerators, custom hardware for specific ML tasks, and ML-driven optimization techniques for chip design and testing. This book will be helpful for academicians, researchers, postgraduate students, and those working in ML-driven VLSI.



Hands On Unsupervised Learning Using Python


Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-02-21

Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks



Advanced Topics In Biometrics


Advanced Topics In Biometrics
DOWNLOAD
Author : Haizhou Li
language : en
Publisher: World Scientific
Release Date : 2011-09-28

Advanced Topics In Biometrics written by Haizhou Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-28 with Computers categories.


Biometrics is the study of methods for uniquely recognizing humans based on one or more intrinsic physical or behavioral traits. After decades of research activities, biometrics, as a recognized scientific discipline, has advanced considerably both in practical technology and theoretical discovery to meet the increasing need of biometric deployments. In this book, the editors provide both a concise and accessible introduction to the field as well as a detailed coverage on the unique research problems with their solutions in a wide spectrum of biometrics research ranging from voice, face, fingerprint, iris, handwriting, human behavior to multimodal biometrics. The contributions also present the pioneering efforts and state-of-the-art results, with special focus on practical issues concerning system development. This book is a valuable reference for established researchers and it also gives an excellent introduction for beginners to understand the challenges.



Transactions On Intelligent Welding Manufacturing


Transactions On Intelligent Welding Manufacturing
DOWNLOAD
Author : Shanben Chen
language : en
Publisher: Springer Nature
Release Date : 2019-08-23

Transactions On Intelligent Welding Manufacturing written by Shanben Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-23 with Technology & Engineering categories.


The primary aim of this volume is to provide researchers and engineers from both academia and industry with up-to-date coverage of recent advances in the fields of robotic welding, intelligent systems and automation. It gathers selected papers from the 2018 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2018), held Oct 20-22, 2018 in Guangzhou, China. The contributions reveal how intelligentized welding manufacturing (IWM) is becoming an inescapable trend, just as intelligentized robotic welding is becoming a key technology. The volume is divided into four main parts: Intelligent Techniques for Robotic Welding, Sensing in Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, and Intelligent Control and its Applications in Engineering.



Applied Machine Learning For Data Science Practitioners


Applied Machine Learning For Data Science Practitioners
DOWNLOAD
Author : Vidya Subramanian
language : en
Publisher: John Wiley & Sons
Release Date : 2025-04-01

Applied Machine Learning For Data Science Practitioners written by Vidya Subramanian and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-01 with Mathematics categories.


A single-volume reference on data science techniques for evaluating and solving business problems using Applied Machine Learning (ML). Applied Machine Learning for Data Science Practitioners offers a practical, step-by-step guide to building end-to-end ML solutions for real-world business challenges, empowering data science practitioners to make informed decisions and select the right techniques for any use case. Unlike many data science books that focus on popular algorithms and coding, this book takes a holistic approach. It equips you with the knowledge to evaluate a range of techniques and algorithms. The book balances theoretical concepts with practical examples to illustrate key concepts, derive insights, and demonstrate applications. In addition to code snippets and reviewing output, the book provides guidance on interpreting results. This book is an essential resource if you are looking to elevate your understanding of ML and your technical capabilities, combining theoretical and practical coding examples. A basic understanding of using data to solve business problems, high school-level math and statistics, and basic Python coding skills are assumed. Written by a recognized data science expert, Applied Machine Learning for Data Science Practitioners covers essential topics, including: Data Science Fundamentals that provide you with an overview of core concepts, laying the foundation for understanding ML. Data Preparation covers the process of framing ML problems and preparing data and features for modeling. ML Problem Solving introduces you to a range of ML algorithms, including Regression, Classification, Ranking, Clustering, Patterns, Time Series, and Anomaly Detection. Model Optimization explores frameworks, decision trees, and ensemble methods to enhance performance and guide the selection of the most effective model. ML Ethics addresses ethical considerations, including fairness, accountability, transparency, and ethics. Model Deployment and Monitoring focuses on production deployment, performance monitoring, and adapting to model drift.



Advances In Self Organizing Maps And Learning Vector Quantization


Advances In Self Organizing Maps And Learning Vector Quantization
DOWNLOAD
Author : Erzsébet Merényi
language : en
Publisher: Springer
Release Date : 2016-01-07

Advances In Self Organizing Maps And Learning Vector Quantization written by Erzsébet Merényi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-07 with Technology & Engineering categories.


This book contains the articles from the international conference 11th Workshop on Self-Organizing Maps 2016 (WSOM 2016), held at Rice University in Houston, Texas, 6-8 January 2016. WSOM is a biennial international conference series starting with WSOM'97 in Helsinki, Finland, under the guidance and direction of Professor Tuevo Kohonen (Emeritus Professor, Academy of Finland). WSOM brings together the state-of-the-art theory and applications in Competitive Learning Neural Networks: SOMs, LVQs and related paradigms of unsupervised and supervised vector quantization.The current proceedings present the expert body of knowledge of 93 authors from 15 countries in 31 peer reviewed contributions. It includes papers and abstracts from the WSOM 2016 invited speakers representing leading researchers in the theory and real-world applications of Self-Organizing Maps and Learning Vector Quantization: Professor Marie Cottrell (Universite Paris 1 Pantheon Sorbonne, France), Professor Pablo Estevez (University of Chile and Millennium Instituteof Astrophysics, Chile), and Professor Risto Miikkulainen (University of Texas at Austin, USA). The book comprises a diverse set of theoretical works on Self-Organizing Maps, Neural Gas, Learning Vector Quantization and related topics, and an excellent variety of applications to data visualization, clustering, classification, language processing, robotic control, planning, and to the analysis of astronomical data, brain images, clinical data, time series, and agricultural data.