Embedded Deep Learning

DOWNLOAD
Download Embedded Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Embedded Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Embedded Deep Learning
DOWNLOAD
Author : Bert Moons
language : en
Publisher: Springer
Release Date : 2018-10-23
Embedded Deep Learning written by Bert Moons and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Technology & Engineering categories.
This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.
Deep Learning On Embedded Systems
DOWNLOAD
Author : Tariq M. Arif
language : en
Publisher: John Wiley & Sons
Release Date : 2025-04-29
Deep Learning On Embedded Systems written by Tariq M. Arif and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-29 with Technology & Engineering categories.
Comprehensive, accessible introduction to deep learning for engineering tasks through Python programming, low-cost hardware, and freely available software Deep Learning On Embedded Systems is a comprehensive guide to the practical implementation of deep learning for engineering tasks through computers and embedded hardware such as Raspberry Pi and Nvidia Jetson Nano. After an introduction to the field, the book provides fundamental knowledge on deep learning, convolutional and recurrent neural networks, computer vision, and basics of Linux terminal and docker engines. This book shows detailed setup steps of Jetson Nano and Raspberry Pi for utilizing essential frameworks such as PyTorch and OpenCV. GPU configuration and dependency installation procedure for using PyTorch is also discussed allowing newcomers to seamlessly navigate the learning curve. A key challenge of utilizing deep learning on embedded systems is managing limited GPU and memory resources. This book outlines a strategy of training complex models on a desktop computer and transferring them to embedded systems for inference. Also, students and researchers often face difficulties with the varying probabilistic theories and notations found in data science literature. To simplify this, the book mainly focuses on the practical implementation part of deep learning using Python programming, low-cost hardware, and freely available software such as Anaconda and Visual Studio Code.To aid in reader learning, questions and answers are included at the end of most chapters. Written by a highly qualified author, Deep Learning On Embedded Systems includes discussion on: Fundamentals of deep learning, including neurons and layers, activation functions, network architectures, hyperparameter tuning, and convolutional and recurrent neural networks (CNNs & RNNs) PyTorch, OpenCV, and other essential framework setups for deep transfer learning, along with Linux terminal operations, docker engine, docker images, and virtual environments in embedded devices. Training models for image classification and object detection with classification, then converting trained PyTorch models to ONNX format for efficient deployment on Jetson Nano and Raspberry Pi. Deep Learning On Embedded Systems serves as an excellent introduction to the field for undergraduate engineering students seeking to learn deep learning implementations for their senior capstone or class projects and graduate researchers and educators who wish to implement deep learning in their research.
Tinyml
DOWNLOAD
Author : Pete Warden
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-12-16
Tinyml written by Pete Warden and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Deep Learning On Edge Computing Devices
DOWNLOAD
Author : Xichuan Zhou
language : en
Publisher: Elsevier
Release Date : 2022-02-02
Deep Learning On Edge Computing Devices written by Xichuan Zhou and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-02 with Computers categories.
Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization.This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices through algorithm-hardware co-design. - Focuses on hardware architecture and embedded deep learning, including neural networks - Brings together neural network algorithm and hardware design optimization approaches to deep learning, alongside real-world applications - Considers how Edge computing solves privacy, latency and power consumption concerns related to the use of the Cloud - Describes how to maximize the performance of deep learning on Edge-computing devices - Presents the latest research on neural network compression coding, deep learning algorithms, chip co-design and intelligent monitoring
Ai Machine Learning And Deep Learning
DOWNLOAD
Author : Fei Hu
language : en
Publisher: CRC Press
Release Date : 2023-06-05
Ai Machine Learning And Deep Learning written by Fei Hu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.
Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on security issues in AI/ML/DL-based systems (i.e., securing the intelligent systems themselves), AI/ML/DL models and algorithms can actually also be used for cyber security (i.e., the use of AI to achieve security). Since AI/ML/DL security is a newly emergent field, many researchers and industry professionals cannot yet obtain a detailed, comprehensive understanding of this area. This book aims to provide a complete picture of the challenges and solutions to related security issues in various applications. It explains how different attacks can occur in advanced AI tools and the challenges of overcoming those attacks. Then, the book describes many sets of promising solutions to achieve AI security and privacy. The features of this book have seven aspects: This is the first book to explain various practical attacks and countermeasures to AI systems Both quantitative math models and practical security implementations are provided It covers both "securing the AI system itself" and "using AI to achieve security" It covers all the advanced AI attacks and threats with detailed attack models It provides multiple solution spaces to the security and privacy issues in AI tools The differences among ML and DL security and privacy issues are explained Many practical security applications are covered
Embedded Machine Learning For Cyber Physical Iot And Edge Computing
DOWNLOAD
Author : Sudeep Pasricha
language : en
Publisher: Springer Nature
Release Date : 2023-10-06
Embedded Machine Learning For Cyber Physical Iot And Edge Computing written by Sudeep Pasricha and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-06 with Technology & Engineering categories.
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Deep Learning In Action Image And Video Processing For Practical Use
DOWNLOAD
Author : Abdussalam Elhanashi
language : en
Publisher: Elsevier
Release Date : 2025-03-12
Deep Learning In Action Image And Video Processing For Practical Use written by Abdussalam Elhanashi and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-12 with Computers categories.
Artificial intelligence technology has entered an extraordinary phase of fast development and wide application. The techniques developed in traditional AI research areas, such as computer vision and object recognition, have found many innovative applications in an array of real-world settings. The general methodological contributions from AI, such as a variety of recently developed deep learning algorithms, have also been applied to a wide spectrum of fields such as surveillance applications, real-time processing, IoT devices, and health care systems. The state-of-the-art and deep learning models have wider applicability and are highly efficient. Deep Learning in Action: Image and Video Processing for Practical Use provides a comprehensive and accessible resource for both intermediate to advanced readers seeking to harness the power of deep learning in the domains of video and image processing. The book bridges the gap between theoretical concepts and practical implementation by emphasizing lightweight approaches, enabling readers to efficiently apply deep learning techniques to real-world scenarios. It focuses on resource-efficient methods, making it particularly relevant in contexts where computational constraints are a concern. - Provides step-by-step guidance on implementing deep learning techniques, specifically for video and image processing tasks in real-world scenarios - Emphasizes lightweight and efficient approaches to deep learning, ensuring that readers learn techniques that are suited to resource-constrained environments - Covers a wide range of real-world applications, such as object detection, image segmentation, video classification - Offers a comprehensive understanding of how deep learning can be leveraged across various domains - Encourages hands-on experience that can be applied to the concepts to existing projects
Data Orchestration In Deep Learning Accelerators
DOWNLOAD
Author : Tushar Krishna
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2020-08-18
Data Orchestration In Deep Learning Accelerators written by Tushar Krishna and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.
This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.
Embedded Deep Learning Generative Ai Algorithms
DOWNLOAD
Author : Muhammad Asim
language : en
Publisher: Independently Published
Release Date : 2025-03-08
Embedded Deep Learning Generative Ai Algorithms written by Muhammad Asim and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-08 with Computers categories.
Embedded deep learning & generative AI algorithms offer a systematic exploration of deep learning and generative artificial intelligence within embedded systems, meticulously crafted to equip readers with theoretical foundations and applied expertise. Structured as a progressive intellectual journey, the text methodically shepherds readers from elementary principles to sophisticated implementations while addressing the nuanced complexities inherent in resource-constrained environments. Bringing abstract algorithmic frameworks with pragmatic engineering considerations fosters a pedagogical synergy between innovation and practicality, underscored by case studies and industry-relevant scenarios illuminating the intersection of cutting-edge AI and embedded architectures. The treatise prioritizes not only conceptual mastery but also the cultivation of problem-solving acumen, preparing practitioners to navigate the evolving landscape of intelligent systems design amidst real-world constraints.
Hardware Accelerator Systems For Artificial Intelligence And Machine Learning
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2021-03-28
Hardware Accelerator Systems For Artificial Intelligence And Machine Learning written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-28 with Mathematics categories.
Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into artificial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance