Encyclopedia Of Data Science And Machine Learning

DOWNLOAD
Download Encyclopedia Of Data Science And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Encyclopedia Of Data Science And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Encyclopedia Of Data Science And Machine Learning
DOWNLOAD
Author : Wang, John
language : en
Publisher: IGI Global
Release Date : 2023-01-20
Encyclopedia Of Data Science And Machine Learning written by Wang, John and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-20 with Computers categories.
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Encyclopedia Of Machine Learning
DOWNLOAD
Author : Claude Sammut
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-28
Encyclopedia Of Machine Learning written by Claude Sammut and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Computers categories.
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Encyclopedia Of Data Science And Machine Learning Vol 1
DOWNLOAD
Author : John Wang
language : en
Publisher: Encyclopedia of Data Science and Machine Learning
Release Date : 2022-10-14
Encyclopedia Of Data Science And Machine Learning Vol 1 written by John Wang and has been published by Encyclopedia of Data Science and Machine Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-14 with categories.
Encyclopedia Of The Sciences Of Learning
DOWNLOAD
Author : Norbert M. Seel
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-05
Encyclopedia Of The Sciences Of Learning written by Norbert M. Seel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-05 with Education categories.
Over the past century, educational psychologists and researchers have posited many theories to explain how individuals learn, i.e. how they acquire, organize and deploy knowledge and skills. The 20th century can be considered the century of psychology on learning and related fields of interest (such as motivation, cognition, metacognition etc.) and it is fascinating to see the various mainstreams of learning, remembered and forgotten over the 20th century and note that basic assumptions of early theories survived several paradigm shifts of psychology and epistemology. Beyond folk psychology and its naïve theories of learning, psychological learning theories can be grouped into some basic categories, such as behaviorist learning theories, connectionist learning theories, cognitive learning theories, constructivist learning theories, and social learning theories. Learning theories are not limited to psychology and related fields of interest but rather we can find the topic of learning in various disciplines, such as philosophy and epistemology, education, information science, biology, and – as a result of the emergence of computer technologies – especially also in the field of computer sciences and artificial intelligence. As a consequence, machine learning struck a chord in the 1980s and became an important field of the learning sciences in general. As the learning sciences became more specialized and complex, the various fields of interest were widely spread and separated from each other; as a consequence, even presently, there is no comprehensive overview of the sciences of learning or the central theoretical concepts and vocabulary on which researchers rely. The Encyclopedia of the Sciences of Learning provides an up-to-date, broad and authoritative coverage of the specific terms mostly used in the sciences of learning and its related fields, including relevant areas of instruction, pedagogy, cognitive sciences, and especially machine learning and knowledge engineering. This modern compendium will be an indispensable source of information for scientists, educators, engineers, and technical staff active in all fields of learning. More specifically, the Encyclopedia provides fast access to the most relevant theoretical terms provides up-to-date, broad and authoritative coverage of the most important theories within the various fields of the learning sciences and adjacent sciences and communication technologies; supplies clear and precise explanations of the theoretical terms, cross-references to related entries and up-to-date references to important research and publications. The Encyclopedia also contains biographical entries of individuals who have substantially contributed to the sciences of learning; the entries are written by a distinguished panel of researchers in the various fields of the learning sciences.
Encyclopedia Of Information Science And Technology
DOWNLOAD
Author : Mehdi Khosrow-Pour
language : en
Publisher: IGI Global Snippet
Release Date : 2009
Encyclopedia Of Information Science And Technology written by Mehdi Khosrow-Pour and has been published by IGI Global Snippet this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Computers categories.
"This set of books represents a detailed compendium of authoritative, research-based entries that define the contemporary state of knowledge on technology"--Provided by publisher.
Fundamentals Of Machine Learning For Predictive Data Analytics
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2015-07-24
Fundamentals Of Machine Learning For Predictive Data Analytics written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-24 with Computers categories.
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
Data Science
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2018-04-13
Data Science written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-13 with Computers categories.
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Machine Learning Design Patterns
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: O'Reilly Media
Release Date : 2020-10-15
Machine Learning Design Patterns written by Valliappa Lakshmanan and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-15 with Computers categories.
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Encyclopedia Of Machine Learning And Data Mining
DOWNLOAD
Author : Claude Sammut
language : en
Publisher:
Release Date :
Encyclopedia Of Machine Learning And Data Mining written by Claude Sammut and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with Machine learning categories.
Proceedings Of The 5th International Conference On Data Science Machine Learning And Applications Volume 2
DOWNLOAD
Author : Amit Kumar
language : en
Publisher: Springer Nature
Release Date : 2024-10-19
Proceedings Of The 5th International Conference On Data Science Machine Learning And Applications Volume 2 written by Amit Kumar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-19 with Computers categories.
This book includes peer reviewed articles from the 5th International Conference on Data Science, Machine Learning and Applications, 2023, held at the G Narayanamma Institute of Technology and Sciences, Hyderabad on 15-16th December, India. ICDSMLA is one of the most prestigious conferences conceptualized in the field of Data Science & Machine Learning offering in-depth information on the latest developments in Artificial Intelligence, Machine Learning, Soft Computing, Human Computer Interaction, and various data science & machine learning applications. It provides a platform for academicians, scientists, researchers and professionals around the world to showcase broad range of perspectives, practices, and technical expertise in these fields. It offers participants the opportunity to stay informed about the latest developments in data science and machine learning.