[PDF] Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens - eBooks Review

Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens


Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens
DOWNLOAD

Download Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens


Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens
DOWNLOAD
Author : Abdulaziz Alossta
language : en
Publisher:
Release Date : 2011

Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens written by Abdulaziz Alossta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt concrete categories.


A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.



Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects


Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects
DOWNLOAD
Author : Salvatory Materu
language : en
Publisher:
Release Date : 2020

Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects written by Salvatory Materu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Warm Mix Asphalt (WMA) technology has the capability of lowering the temperature at which the asphalt is mixed and compacted by 30°C or more without compromising the performance of asphalt pavement. The reduced difference between asphalt mix and ambient temperature results in a lower cooling rate thus allows for long haul, sufficient compaction time and late season projects compared to the conventional Hot Mix Asphalt (HMA). In northern climate, asphalt paving season is relatively short and paving is often done late in the season when weather conditions are less than ideal. The potential benefit of WMA, among others, is an extended paving season for the City of Winnipeg. Reduction in production temperature also comes with other positive impacts both economically and environmentally. The objective of this study is to evaluate the installation of WMA, compile experiences with this technology and evaluate their effects on construction methods and performance. The study further attempts to evaluate the effectiveness of the WMA chemical additives and its dosage rate as liquid anti-strip agents on the properties of WMA mixtures through field and laboratory testing programs. In addition to the overall effectiveness of WMA, the study aimed to evaluate its economic cost relative to Hot Mix Asphalt (HMA). A chemical additive was used at three different dosages (0.3, 0.5 and 0.7 percent by weight of asphalt cement). The additive has the ability to improve mixing, aggregate coating, workability, compaction and adhesion with no change in materials or job mix formula required. The study showed that WMA could be successfully placed using conventional HMA paving practices and procedures. Among the different additive dosages used, 0.5% had a better overall performance. The moisture sensitivity tests indicated the highest Tensile Strength Ratio (TSR) at this dosage, suggesting the lowest moisture damage susceptibility. All four mixtures had low rutting resistance potential with no significant difference among them. The WMA showed a higher cracking resistance compared to HMA. The WMA price was between 2% to 11% higher than conventional HMA including the costs of additional testing as well as the WMA additives.



Evaluation Of Laboratory Conditioning Protocols For Warm Mix Asphalt


Evaluation Of Laboratory Conditioning Protocols For Warm Mix Asphalt
DOWNLOAD
Author : Fan Yin
language : en
Publisher:
Release Date : 2013

Evaluation Of Laboratory Conditioning Protocols For Warm Mix Asphalt written by Fan Yin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


Warm-Mix Asphalt (WMA) refers to the asphalt concrete paving material produced and placed at temperatures approximately 50°F lower than those used for Hot-Mix Asphalt (HMA). Economic, environmental and engineering benefits have boosted the use of WMA technology across the world during the past decade. While WMA technology has been successfully utilized as a paving material, several specifications and mix design protocols remain under development. For example, currently, there is no consistent laboratory conditioning procedure for preparing WMA specimens for performance tests, despite being essential for mix performance. Based on previous studies, several candidate conditioning protocols for WMA Laboratory Mixed Laboratory Compacted (LMLC) and off-site Plant Mixed Laboratory Compacted (PMLC) specimens were selected, and their effects on mixture properties were evaluated. Mixture stiffness evaluated in a dry condition using the Resilient Modulus (MR) test (ASTM D-7369) was the main parameter used to select a conditioning protocol to simulate pavement stiffness in its early life. The number of Superpave Gyratory Compactor (SGC) gyrations to get 7±0.5% air voids (AV) was the alternative parameter. Extracted binder stiffness and aggregate orientation of field cores and on-site PMLC specimens were evaluated using the Dynamic Shear Rheometer (DSR) (AASHTO T315) and image analysis techniques, respectively. In addition, mixture stiffness in a wet condition was evaluated using the Hamburg Wheel-Track Test (HWTT) (AASHTO T324) stripping inflection point (SIP) and rutting depth at a certain number of passes. Several conclusions are made based on test results. LMLC specimens conditioned for 2 hours at 240°F (116°C) for WMA and 275°F (135°C) for HMA had similar stiffnesses as cores collected during the early life of field pavements. For off-site PMLC specimens, different conditioning protocols are recommended to simulate stiffnesses of on-site PMLC specimens: reheat to 240°F (116°C) for WMA with additives and reheat to 275°F (135°C) for HMA and foamed WMA. Additionally, binder stiffness, aggregate orientation, and overall AV had significant effects on mixture stiffness. Mixture stiffness results for PMFC cores and on-site PMLC specimens in a wet condition as indicated by HWTT agree with those in a dry condition in MR testing. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148143



Evaluation Of Warm Mix Asphalt Technologies With Respect To Binder Aging And Emissions


Evaluation Of Warm Mix Asphalt Technologies With Respect To Binder Aging And Emissions
DOWNLOAD
Author : Faramarz Farshidi
language : en
Publisher:
Release Date : 2012

Evaluation Of Warm Mix Asphalt Technologies With Respect To Binder Aging And Emissions written by Faramarz Farshidi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


In recent years Warm Mix Asphalt (WMA) technologies have been used to modify asphalt binders, with the following objectives: to decrease production and construction temperatures, reduce fumes and emissions, increase haul distance, and improve the workability of the mix. Reduced temperatures at the plant and during laydown and compaction are hypothesized to positively impact long-term oxidative aging behavior due to less oxidation/aging and result in less emissions during production and construction due to reduced production and construction temperatures. The purpose of this investigation was to quantify these improvements with respect to long-term oxidative aging in the field and environmental benefits with respect to volatile organic compounds, semi-volatile organic compounds and poly cyclic aromatic hydrocarbons in order to confirm or deny this hypothesis. This research evaluated the potential durability of WMA and Rubberized Warm Mix Asphalt (R-WMA) binders with respect to long-term aging through characterization of field-aged binders extracted and recovered from field cores. The results were compared to the control conventional Hot Mix Asphalt (HMA) and Rubberized Hot Mix Asphalt (R-HMA) samples. Binders were extracted and recovered from thirteen different test sections and a total of seven different WMA technologies were evaluated in this study. The Dynamic Shear Rheometer (DSR) was used to evaluate the rheological properties of the binders at high temperatures with respect to rutting performance in the field. The Bending Beam Rheometer (BBR) was used to characterize low temperature properties of the binder samples. A new testing procedure was developed to measure and characterize the rheological properties of the R-HMA and R-WMA binders with respect to performance-related properties in the field. The rheological results indicated that depending on the WMA technology used, the addition of WMA technologies and reduced production and compaction temperatures result in increase or decrease rutting resistance performance for WMA and R-WMA binders with respect to permanent deformation at high temperatures in the field. Both WMA and R-WMA binders studied meet the established thermal cracking criteria with respect to low temperature cracking in the field. The aging kinetics curves for WMA-treated binders are parallel to the control binders and the addition of WMA technologies including organic, chemical and mechanical foaming technologies studied in this research did not result in a different aging kinetics trend with respect to long-term aging in the field. A portable "flux" chamber was designed and fabricated to capture and directly measure emissions during paving operations. Emissions were collected in activated charcoal sorbent tubes for characterizing volatile organic compounds and semi-volatile organic compounds. XAD-2 resin tubes and filters were used to capture the gaseous phase and particulate phase of the PAH compounds, respectively. A reliable analytical method was developed to identify and quantify alkane emissions using gas chromatography mass spectrometry (GC/MS) in the laboratory. A separate method was developed for identification and characterization of trace level PAH compounds of the asphalt fumes. The results demonstrated that the warm mix asphalt technology type, plant mixing temperature and level of compaction significantly influence the emission characteristics throughout paving operations. Moreover, the emissions kinetics indicated that the majority of the reactive organic gases are volatilized in the first hour after sampling initiation (immediately after production and before compaction). To better understand and identify any chemical composition changes of the binder due to WMA technologies, nuclear magnetic resonance spectroscopy (NMR) was used for understanding structural complexities of HMA and WMA binder molecules. Qualitative analysis of both carbon and hydrogen atoms with HMA and WMA binders showed that the molecular structures of the binders are not significantly changed by the effect of WMA technologies.



Performance Assessment Of Warm Mix Asphalt Wma Pavements


Performance Assessment Of Warm Mix Asphalt Wma Pavements
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

Performance Assessment Of Warm Mix Asphalt Wma Pavements written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Pavements, Asphalt categories.


Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform binder coating of aggregate which should reduce mix surface aging, and extended construction season in temperate climates. Three WMA techniques, Aspha-min, Sasobit, and Evotherm, were used to reduce the viscosity of the asphalt binder at certain temperatures and to dry and fully coat the aggregates at a lower production temperature than conventional hot mix asphalt. The reduction in mixing and compaction temperatures of asphalt mixtures leads to a reduction in both fuel consumption and emissions. This research project had two major components, the outdoor field study on SR541 in Guernsey County and the indoor study in the Accelerated Pavement Load Facility (APLF). Each study included the application of four types of asphalt surface layer, including standard hot mix asphalt as a control and three warm mixes: Evotherm, Aspha-min, and Sasobit. The outdoor study began with testing of the preexisting pavement and subgrade, the results of which indicated that while the pavement and subgrade were not uniform, there were no significant problems or variations that would be expected to lead to differences in performance of the planned test sections. During construction, the outdoor study included collection of emissions samples at the plant and on the construction site as well as thermal readings from the site. Afterwards, the outdoor study included the periodic collection and laboratory analysis of core samples and visual inspections of the road. Roughness (IRI) measurements were made shortly after construction and after a year of service. The indoor study involved the construction of four lanes of perpetual pavement, each topped with one of the test mixes. The lanes were further divided into northern and southern halves, with the northern halves having a full 16 in (40 cm) perpetual pavement, and with the southern halves with thicknesses decreasing in one in (2.5 cm) increments by reducing the intermediate layer. The dense graded aggregate base was increased to compensate for the change in pavement thickness. The southern half of each lane was instrumented to measure temperature, subgrade pressure, deflection relative to top of subgrade and to a point 5 ft (1.5 m) down, and longitudinal and transverse strains at the base of the fatigue resistance layer (FRL). The APLF had the temperature set to 40°F (4.4°C), 70°F (21.1°C), and 104°F (40°C), in that order. At each temperature, rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) were applied at lateral shifts of 3 in (76 mm), 1 in (25 mm), -4 in ( -102 mm), and -9 in ( - 229 mm) and the response measured. Then each plane was subjected to 10,000 passes of the rolling wheel load of 9000 lb (40 kN) at about 5 mph (8 km/h). Profiles were measured after 100, 300, 1000, 3000, and 10,000 passes with a profilometer to assess consolidation of each surface. After the 10,000 passes of the rolling wheel load were completed, a second set of measurements was made under rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) at the same lateral shifts as before. Additionally, the response of the pavement instrumentation was recorded during drops of a Falling Weight Deflectometer (FWD).



Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement


Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement
DOWNLOAD
Author : Emily Dawn Shrum
language : en
Publisher:
Release Date : 2010

Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement written by Emily Dawn Shrum and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.


Warm mix asphalt (WMA) has been used worldwide for many years, primarily in Europe. The National Asphalt Pavement Association first brought WMA to the United States in 2002. By using warm mix technology, the temperature of an asphalt mixture during production, transportation, and compaction decreases dramatically. Several concerns about WMA arise due to the reduced mixing temperature. One of the primary concerns in asphalt pavement is the moisture damage. The lower mixing temperature may not be high enough to vaporize all the moisture absorbed in the aggregate, and part of the moisture may be entrapped in the pavements during compaction. This thesis presents a laboratory study to evaluate the moisture susceptibility of warm mix asphalt (WMA) produced through plant foaming procedure. Two types of mixtures were evaluated. A base mixture meeting the state of Tennessee "BM-2" mix criteria was evaluated at 0, 30, 40, and 50 percent fractionated recycled asphalt pavement (RAP), and a surface mixture meeting the state of Tennessee "411-D" mix criteria was evaluated at 15, 20, 30, 40 percent fractionated RAP. WMA mixture specimens were obtained and compacted at the asphalt plant. The WMA specimens were compared to hot-mix asphalt (HMA) specimens through a set of laboratory mixture performance tests. In addition to traditional AASHTO T283 freeze and thaw (F-T) tensile strength ratio (TSR), Superpave indirect tensile test (IDT) with F-T and MIST conditioning, and Asphalt Pavement Analyzer (APA) Hamburg wheel tracking tests were utilized to evaluate asphalt mixtures. Moisture tests indicated that with the higher inclusions of RAP, specimens exhibited lower rut depths and higher tensile strength retention. Tensile strength ratio tests indicated that HMA specimens had higher tensile strength retention when freeze thaw conditioned. Dynamic modulus conditioned specimens indicated that simple performance tests can show the difference between conditioned and unconditioned specimens. HMA specimens showed lower susceptibility to moisture compared to WMA specimens for both BM-2 and 411-D mixtures. The higher percentages of RAP in WMA and HMA in both BM-2 and 411-D mixtures showed a reduction to moisture susceptibility.



Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders


Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders
DOWNLOAD
Author : Ayman W. Ali
language : en
Publisher:
Release Date : 2010

Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders written by Ayman W. Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Asphalt categories.


Warm Mix Asphalt (WMA) is a name given to different technologies that have the common purpose of reducing the viscosity of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixing and compaction temperatures, and subsequently reducing energy consumption and pollutant emissions during asphalt mix production and placement. WMA technologies can be classified into two groups. The first group reduces the asphalt binders' viscosity through the addition of organic or chemical additives, while the second group reduces the viscosity of the asphalt binders through the addition of water. The latter has received increased attention in Ohio since it does not require the use of costly additives. In spite of the above-mentioned advantages for WMA mixtures, many concerns have been raised regarding the susceptibility of this material to moisture-induced damage and permanent deformation due to the reduced temperature level used during WMA production. Therefore, this study was conducted to develop a laboratory procedure to produce WMA mixtures prepared using foamed asphalt binders (WMA-FA), and to evaluate their performance in comparison to conventional Hot Mix Asphalt (HMA). This study involved two types of aggregates (natural gravel and crushed limestone) and two types of asphalt binders (PG 64-22 and PG 70-22M). A laboratory scale asphalt binder foaming device called WLB10, produced by Wirtgen, Inc., was used to foam the asphalt binders. The aggregate gradation met the Ohio Department of Transportation (ODOT) Construction and Materials Specification (C&MS) requirements for Item 441 Type 1 Surface Course for Medium Traffic. The resistance of WMA-FA and HMA mixtures to moisture-induced damage was measured using AASHTO T-283, and the resistance to permanent deformation was measured using the Asphalt Pavement Analyzer (APA) and the Simple Performance Test (SPT). Based on the experimental test results and the subsequent analyses findings, the following conclusions were made: [1] WMA-FA mixtures are more workable and easily compacted than HMA mixtures even though they are produced at lower mixing and compaction temperatures; [2] WMA-FA mixtures are slightly more susceptible to moisture damage than HMA mixtures. However, the difference is statistically insignificant. Therefore, if designed properly, both mixtures are expected to meet ODOT's minimum TSR requirement for the proposed traffic level; [3] WMA-FA mixtures, especially those prepared using gravel aggregates and unmodified asphalt binders are more prone to rutting than the corresponding HMA mixtures. Therefore, it is recommended to include the APA test as part of the WMA mix design procedure to ensure satisfactory performance for rutting.



Evaluation Of Warm Mix Asphalt Mixtures Containing Rap Using Accelerated Loading Tests


Evaluation Of Warm Mix Asphalt Mixtures Containing Rap Using Accelerated Loading Tests
DOWNLOAD
Author : Munir D. Nazzal
language : en
Publisher:
Release Date : 2011

Evaluation Of Warm Mix Asphalt Mixtures Containing Rap Using Accelerated Loading Tests written by Munir D. Nazzal and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Accelerated loading tests categories.


This paper presents the results of a study that was conducted to evaluate the performance and constructability of warm mix asphalt (WMA) mixtures containing reclaimed asphalt pavement (RAP). Four sections were constructed at the indoor Accelerated Pavement Loading Facility at Ohio University. Aspha-min, Sasobit, and Evotherm WMA mixtures were used in the wearing course layer of the first three sections. In addition, the fourth section had a conventional hot mix asphalt (HMA) mixture, which was used as a control. Temperature was monitored during the production, placement, and compaction of WMA and HMA mixtures. Furthermore, emission tests were conducted at the asphalt plants during the production of each of the evaluated mixtures. Falling weight deflectometer (FWD) and rolling wheel tests were conducted at different temperatures on all evaluated sections. The results of this study showed that emissions were reduced during the production of the Aspha-min and Sasobit WMA mixtures by at least 50 % for volatile organic compounds, 60 % for carbon monoxide, 20 % for nitrogen oxides, and 83 % for sulfur dioxide, when compared to the control HMA mixture. In addition, although WMA mixtures were produced and compacted at much lower temperatures, they achieved better field densities than the control HMA mixture. The FWD test results showed that at 40°F (4°C) test temperature, the control HMA mixture had significantly lower stiffness than that of the WMA mixtures. However, the FWD stiffness measurement of the HMA and the WMA mixtures were statistically indistinguishable at the intermediate and high test temperatures of 70°F (21.1°C) and 104°F (40°C), respectively. Finally, the rolling wheel test results indicated that the three WMA sections, especially the Evotherm section, exhibited more rutting than the control HMA section during the post primary compaction stage. However, the rutting rate of the HMA section was higher than those of the WMA sections in the secondary stage, which suggests that the rutting difference may slowly be mitigated.



Laboratory Evaluation Of Warm Mix Asphalt


Laboratory Evaluation Of Warm Mix Asphalt
DOWNLOAD
Author : Zhanping Yuo
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Warm Mix Asphalt written by Zhanping Yuo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt emulsion mixtures categories.


Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between 280° F (138° C) and 320° F (160° C), resulting in high energy (fuel) costs and generation of greenhouse gases. The goal for Warm Mix Asphalt (WMA) is to use existing HMA plants and specifications to produce quality dense graded mixtures at significantly lower temperatures. Europeans are using WMA technologies that allow the mixture to be placed at temperatures as low as 250° F (121° C). It is reported that energy savings on the order of 30%, with a corresponding reduction in CO2 emissions of 30%, are realized when WMA is used compared to conventional HMA. Although numerous studies have been conducted on WMA, only limited laboratory experiments are available and most of the current WMA laboratory test results are inconsistent and not compatible with field performance The main objectives of this study are: The main objectives of this study are: 1) review and synthesize information on the available WMA technologies; 2) measure the complex/dynamic modulus of WMA and the control mixtures (HMA) for comparison purpose and for use in mechanistic-empirical (ME) design comparison; 3) assess the rutting and fatigue potential of WMA mixtures; and 4) provide recommendation for the proper WMA for use in Michigan considering the aggregate, binder, and climatic factors. The testing results indicated that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. In addition, the WMA design framework was developed based on the testing results, and presented in this study to allow contractors and state agencies to successfully design WMA around the state of Michigan.



Evaluation Of Warm Mix Asphalt Technology In Flexible Pavements


Evaluation Of Warm Mix Asphalt Technology In Flexible Pavements
DOWNLOAD
Author : Louay Mohammad
language : en
Publisher:
Release Date : 2018

Evaluation Of Warm Mix Asphalt Technology In Flexible Pavements written by Louay Mohammad and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Civil engineering categories.