[PDF] Laboratory Evaluation Of Warm Mix Asphalt - eBooks Review

Laboratory Evaluation Of Warm Mix Asphalt


Laboratory Evaluation Of Warm Mix Asphalt
DOWNLOAD

Download Laboratory Evaluation Of Warm Mix Asphalt PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Laboratory Evaluation Of Warm Mix Asphalt book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Laboratory Evaluation Of Warm Mix Asphalt Influence On Theoretical Maximum Specific Gravity


Laboratory Evaluation Of Warm Mix Asphalt Influence On Theoretical Maximum Specific Gravity
DOWNLOAD
Author : Jianhua Yu
language : en
Publisher:
Release Date : 2012

Laboratory Evaluation Of Warm Mix Asphalt Influence On Theoretical Maximum Specific Gravity written by Jianhua Yu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Asphalt concrete categories.


Warm mix asphalt (WMA) technology provides sufficient workability for asphalt mixtures at reduced mixing and compaction temperatures. Depending on the WMA technology, the typical temperature reduction range is 20 °C to 55 °C below hot mix asphalt (HMA) production temperatures. WMA involves chemical and wax additives that are added to an asphalt binder or incorporated through the use of foaming technology. The main advantages of WMA are reduced emissions and a reduction in combustible fuel consumption. Ongoing WMA research projects have documented some differences between HMA and WMA mixes, prompting numerous research projects that are investigating these concerns. The purpose of this research is to evaluate the volumetric properties by directly comparing laboratory produced WMA and HMA mixes. This study investigates the impact of WMA additives on the volumetric properties, specifically, the theoretical maximum specific gravity (Gmm). The Gmm testing followed the procedure of ASTM D2041. Two mix designs with HMA binder were produced, one without recycled asphalt pavement (RAP) and the other with 30 % RAP. After the mix designs were completed, no additional changes were made to account for the addition of the WMA technology. The mixes included the WMA technologies Sasobit and Advera, as well as an HMA control, for a total of six different laboratory produced mixes. Each mix was produced at 120 °C, 135 °C, and 150 °C, and each mix was oven cured for 1, 2, and 4 h. The test results were analyzed using statistical principles to determine whether differences in the Gmm values were statistically significant. The results show that temperature has little impact on Gmm. Gmm was not affected by curing times of 1 and 2 h, but the longer curing time of 4 h resulted in a statistically significant increase in Gmm. Further analysis revealed that the mix sensitivity to curing time depends on the amount of RAP in the mix. For the mix designs studied, the Advera Gmm values were similar to the HMA values, but the Sasobit Gmm values were statistically lower than the Advera values.



Laboratory Evaluation Of Warm Mix Asphalt


Laboratory Evaluation Of Warm Mix Asphalt
DOWNLOAD
Author : Zhanping Yuo
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Warm Mix Asphalt written by Zhanping Yuo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt emulsion mixtures categories.


Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between 280° F (138° C) and 320° F (160° C), resulting in high energy (fuel) costs and generation of greenhouse gases. The goal for Warm Mix Asphalt (WMA) is to use existing HMA plants and specifications to produce quality dense graded mixtures at significantly lower temperatures. Europeans are using WMA technologies that allow the mixture to be placed at temperatures as low as 250° F (121° C). It is reported that energy savings on the order of 30%, with a corresponding reduction in CO2 emissions of 30%, are realized when WMA is used compared to conventional HMA. Although numerous studies have been conducted on WMA, only limited laboratory experiments are available and most of the current WMA laboratory test results are inconsistent and not compatible with field performance The main objectives of this study are: The main objectives of this study are: 1) review and synthesize information on the available WMA technologies; 2) measure the complex/dynamic modulus of WMA and the control mixtures (HMA) for comparison purpose and for use in mechanistic-empirical (ME) design comparison; 3) assess the rutting and fatigue potential of WMA mixtures; and 4) provide recommendation for the proper WMA for use in Michigan considering the aggregate, binder, and climatic factors. The testing results indicated that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. In addition, the WMA design framework was developed based on the testing results, and presented in this study to allow contractors and state agencies to successfully design WMA around the state of Michigan.



Laboratory Evaluation Of Warm Mix Asphalt


Laboratory Evaluation Of Warm Mix Asphalt
DOWNLOAD
Author : Zhanping Yuo
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Warm Mix Asphalt written by Zhanping Yuo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt emulsion mixtures categories.


Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between 280° F (138° C) and 320° F (160° C), resulting in high energy (fuel) costs and generation of greenhouse gases. The goal for Warm Mix Asphalt (WMA) is to use existing HMA plants and specifications to produce quality dense graded mixtures at significantly lower temperatures. Europeans are using WMA technologies that allow the mixture to be placed at temperatures as low as 250° F (121° C). It is reported that energy savings on the order of 30%, with a corresponding reduction in CO2 emissions of 30%, are realized when WMA is used compared to conventional HMA. Although numerous studies have been conducted on WMA, only limited laboratory experiments are available and most of the current WMA laboratory test results are inconsistent and not compatible with field performance The main objectives of this study are: The main objectives of this study are: 1) review and synthesize information on the available WMA technologies; 2) measure the complex/dynamic modulus of WMA and the control mixtures (HMA) for comparison purpose and for use in mechanistic-empirical (ME) design comparison; 3) assess the rutting and fatigue potential of WMA mixtures; and 4) provide recommendation for the proper WMA for use in Michigan considering the aggregate, binder, and climatic factors. The testing results indicated that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. In addition, the WMA design framework was developed based on the testing results, and presented in this study to allow contractors and state agencies to successfully design WMA around the state of Michigan.



Laboratory Evaluation Of Warm Mix Asphalt Technologies For Moisture And Rutting Susceptibility


Laboratory Evaluation Of Warm Mix Asphalt Technologies For Moisture And Rutting Susceptibility
DOWNLOAD
Author : Haritha Malladi
language : en
Publisher:
Release Date : 2012

Laboratory Evaluation Of Warm Mix Asphalt Technologies For Moisture And Rutting Susceptibility written by Haritha Malladi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.




Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders


Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders
DOWNLOAD
Author : Ayman W. Ali
language : en
Publisher:
Release Date : 2010

Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders written by Ayman W. Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Asphalt categories.


Warm Mix Asphalt (WMA) is a name given to different technologies that have the common purpose of reducing the viscosity of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixing and compaction temperatures, and subsequently reducing energy consumption and pollutant emissions during asphalt mix production and placement. WMA technologies can be classified into two groups. The first group reduces the asphalt binders' viscosity through the addition of organic or chemical additives, while the second group reduces the viscosity of the asphalt binders through the addition of water. The latter has received increased attention in Ohio since it does not require the use of costly additives. In spite of the above-mentioned advantages for WMA mixtures, many concerns have been raised regarding the susceptibility of this material to moisture-induced damage and permanent deformation due to the reduced temperature level used during WMA production. Therefore, this study was conducted to develop a laboratory procedure to produce WMA mixtures prepared using foamed asphalt binders (WMA-FA), and to evaluate their performance in comparison to conventional Hot Mix Asphalt (HMA). This study involved two types of aggregates (natural gravel and crushed limestone) and two types of asphalt binders (PG 64-22 and PG 70-22M). A laboratory scale asphalt binder foaming device called WLB10, produced by Wirtgen, Inc., was used to foam the asphalt binders. The aggregate gradation met the Ohio Department of Transportation (ODOT) Construction and Materials Specification (C&MS) requirements for Item 441 Type 1 Surface Course for Medium Traffic. The resistance of WMA-FA and HMA mixtures to moisture-induced damage was measured using AASHTO T-283, and the resistance to permanent deformation was measured using the Asphalt Pavement Analyzer (APA) and the Simple Performance Test (SPT). Based on the experimental test results and the subsequent analyses findings, the following conclusions were made: [1] WMA-FA mixtures are more workable and easily compacted than HMA mixtures even though they are produced at lower mixing and compaction temperatures; [2] WMA-FA mixtures are slightly more susceptible to moisture damage than HMA mixtures. However, the difference is statistically insignificant. Therefore, if designed properly, both mixtures are expected to meet ODOT's minimum TSR requirement for the proposed traffic level; [3] WMA-FA mixtures, especially those prepared using gravel aggregates and unmodified asphalt binders are more prone to rutting than the corresponding HMA mixtures. Therefore, it is recommended to include the APA test as part of the WMA mix design procedure to ensure satisfactory performance for rutting.



Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens


Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens
DOWNLOAD
Author : Abdulaziz Alossta
language : en
Publisher:
Release Date : 2011

Evaluation Of Warm Mix Asphalt Versus Conventional Hot Mix Asphalt For Field And Laboratory Compacted Specimens written by Abdulaziz Alossta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt concrete categories.


A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.



Laboratory Evaluation Of Workability And Moisture Susceptibility Of Warm Mix Asphalt Technologies With Reclaimed Asphalt Pavement Material


Laboratory Evaluation Of Workability And Moisture Susceptibility Of Warm Mix Asphalt Technologies With Reclaimed Asphalt Pavement Material
DOWNLOAD
Author : Abhilash Kusam
language : en
Publisher:
Release Date : 2014

Laboratory Evaluation Of Workability And Moisture Susceptibility Of Warm Mix Asphalt Technologies With Reclaimed Asphalt Pavement Material written by Abhilash Kusam and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.




Laboratory And Field Evaluation Of Warm Mix Asphalt Technology To Determine Its Applicability For Massachusetts


Laboratory And Field Evaluation Of Warm Mix Asphalt Technology To Determine Its Applicability For Massachusetts
DOWNLOAD
Author : Walaa S. Mogawer
language : en
Publisher:
Release Date : 2008

Laboratory And Field Evaluation Of Warm Mix Asphalt Technology To Determine Its Applicability For Massachusetts written by Walaa S. Mogawer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Pavements categories.




Laboratory And Field Evaluation Of Warm Mix Asphalt


Laboratory And Field Evaluation Of Warm Mix Asphalt
DOWNLOAD
Author : Alexander Jordan Austerman
language : en
Publisher:
Release Date : 2009

Laboratory And Field Evaluation Of Warm Mix Asphalt written by Alexander Jordan Austerman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.




Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State


Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State
DOWNLOAD
Author : Nathan Bower
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State written by Nathan Bower and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt concrete categories.