Foundations Of Machine Learning

DOWNLOAD
Download Foundations Of Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Foundations Of Machine Learning
DOWNLOAD
Author : Mehryar Mohri
language : en
Publisher: MIT Press
Release Date : 2012-08-17
Foundations Of Machine Learning written by Mehryar Mohri and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-17 with Computers categories.
Fundamental topics in machine learning are presented along with theoretical and conceptual tools for the discussion and proof of algorithms. This graduate-level textbook introduces fundamental concepts and methods in machine learning. It describes several important modern algorithms, provides the theoretical underpinnings of these algorithms, and illustrates key aspects for their application. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning fills the need for a general textbook that also offers theoretical details and an emphasis on proofs. Certain topics that are often treated with insufficient attention are discussed in more detail here; for example, entire chapters are devoted to regression, multi-class classification, and ranking. The first three chapters lay the theoretical foundation for what follows, but each remaining chapter is mostly self-contained. The appendix offers a concise probability review, a short introduction to convex optimization, tools for concentration bounds, and several basic properties of matrices and norms used in the book. The book is intended for graduate students and researchers in machine learning, statistics, and related areas; it can be used either as a textbook or as a reference text for a research seminar.
Foundations Of Machine Learning
DOWNLOAD
Author : Mehryar Mohri
language : en
Publisher: MIT Press (MA)
Release Date : 2012
Foundations Of Machine Learning written by Mehryar Mohri and has been published by MIT Press (MA) this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
This graduate-level textbook introduces fundamental concepts and methods in machine learning. It describes several important modern algorithms, provides the theoretical underpinnings of these algorithms, and illustrates key aspects for their application. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. "Foundations of Machine Learning" fills the need for a general textbook that also offers theoretical details and an emphasis on proofs. Certain topics that are often treated with insufficient attention are discussed in more detail here; for example, entire chapters are devoted to regression, multi-class classification, and ranking. The first three chapters lay the theoretical foundation for what follows, but each remaining chapter is mostly self-contained. The appendix offers a concise probability review, a short introduction to convex optimization, tools for concentration bounds, and several basic properties of matrices and norms used in the book. The book is intended for graduate students and researchers in machine learning, statistics, and related areas; it can be used either as a textbook or as a reference text for a research seminar.
Patterns Predictions And Actions
DOWNLOAD
Author : Moritz Hardt
language : en
Publisher: Princeton University Press
Release Date : 2022-08-23
Patterns Predictions And Actions written by Moritz Hardt and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-23 with Computers categories.
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
Foundations Of Computer Vision
DOWNLOAD
Author : Antonio Torralba
language : en
Publisher: MIT Press
Release Date : 2024-04-16
Foundations Of Computer Vision written by Antonio Torralba and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-16 with Computers categories.
An accessible, authoritative, and up-to-date computer vision textbook offering a comprehensive introduction to the foundations of the field that incorporates the latest deep learning advances. Machine learning has revolutionized computer vision, but the methods of today have deep roots in the history of the field. Providing a much-needed modern treatment, this accessible and up-to-date textbook comprehensively introduces the foundations of computer vision while incorporating the latest deep learning advances. Taking a holistic approach that goes beyond machine learning, it addresses fundamental issues in the task of vision and the relationship of machine vision to human perception. Foundations of Computer Vision covers topics not standard in other texts, including transformers, diffusion models, statistical image models, issues of fairness and ethics, and the research process. To emphasize intuitive learning, concepts are presented in short, lucid chapters alongside extensive illustrations, questions, and examples. Written by leaders in the field and honed by a decade of classroom experience, this engaging and highly teachable book offers an essential next-generation view of computer vision. Up-to-date treatment integrates classic computer vision and deep learning Accessible approach emphasizes fundamentals and assumes little background knowledge Student-friendly presentation features extensive examples and images Proven in the classroom Instructor resources include slides, solutions, and source code
Ai Foundations Of Machine Learning
DOWNLOAD
Author : Donald Lee
language : en
Publisher: Independently Published
Release Date : 2025-03-08
Ai Foundations Of Machine Learning written by Donald Lee and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-08 with Computers categories.
Machine learning and artificial intelligence (AI) are reshaping industries, automating tasks, and driving innovation across the world. Foundations of Machine Learning and AI provides a structured and accessible introduction to these powerful technologies, offering readers a clear understanding of key concepts, algorithms, and real-world applications. This book covers essential topics, including supervised and unsupervised learning, reinforcement learning, data preprocessing, model training, and evaluation techniques. It also delves into the mathematical foundations of machine learning, such as linear algebra, probability, and optimization, ensuring readers gain a deeper insight into how AI systems learn and improve over time. Beyond the technical aspects, this guide also explores the ethical considerations, challenges, and future trends in AI, highlighting the importance of fairness, bias mitigation, and responsible AI development. Whether you are a beginner looking to build foundational knowledge or a professional seeking a refresher, this book serves as a comprehensive resource to help you navigate the evolving landscape of machine learning and artificial intelligence. Equip yourself with the fundamental knowledge needed to understand and apply machine learning concepts effectively. Start your journey into AI today!
Handbook Of Research On Foundations And Applications Of Intelligent Business Analytics
DOWNLOAD
Author : Sun, Zhaohao
language : en
Publisher: IGI Global
Release Date : 2022-03-11
Handbook Of Research On Foundations And Applications Of Intelligent Business Analytics written by Sun, Zhaohao and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-11 with Computers categories.
Intelligent business analytics is an emerging technology that has become a mainstream market adopted broadly across industries, organizations, and geographic regions. Intelligent business analytics is a current focus for research and development across academia and industries and must be examined and considered thoroughly so businesses can apply the technology appropriately. The Handbook of Research on Foundations and Applications of Intelligent Business Analytics examines the technologies and applications of intelligent business analytics and discusses the foundations of intelligent analytics such as intelligent mining, intelligent statistical modeling, and machine learning. Covering topics such as augmented analytics and artificial intelligence systems, this major reference work is ideal for scholars, engineers, professors, practitioners, researchers, industry professionals, academicians, and students.
Machine Learning And Artificial Intelligence With Industrial Applications
DOWNLOAD
Author : Diego Carou
language : en
Publisher: Springer Nature
Release Date : 2022-03-11
Machine Learning And Artificial Intelligence With Industrial Applications written by Diego Carou and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-11 with Technology & Engineering categories.
This book presents the tools used in machine learning (ML) and the benefits of using such tools in facilities. It focus on real life business applications, explaining the most popular algorithms easily and clearly without the use of calculus or matrix/vector algebra. Replete with case studies, this book provides a working knowledge of ML current and future capabilities and the impact it will have on every business. It demonstrates that it is also possible to carry out successful ML and AI projects in any manufacturing plant, even without fully fulfilling the five V (Volume, Velocity, Variety, Veracity and Value) usually associated with big data. This book takes a closer look at how AI and ML are also able to work for industrial area, as well as how you could adapt some of the standard tips and techniques (usually for big data) for your own needs in your SME. Organizations which first understand these tools and know how to use them will benefit at the expense of their rivals.
Introducing Machine Learning
DOWNLOAD
Author : Dino Esposito
language : en
Publisher: Microsoft Press
Release Date : 2020-01-31
Introducing Machine Learning written by Dino Esposito and has been published by Microsoft Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
Veridical Data Science
DOWNLOAD
Author : Bin Yu
language : en
Publisher: MIT Press
Release Date : 2024-10-15
Veridical Data Science written by Bin Yu and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-15 with Computers categories.
Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science. Most textbooks present data science as a linear analytic process involving a set of statistical and computational techniques without accounting for the challenges intrinsic to real-world applications. Veridical Data Science, by contrast, embraces the reality that most projects begin with an ambiguous domain question and messy data; it acknowledges that datasets are mere approximations of reality while analyses are mental constructs. Bin Yu and Rebecca Barter employ the innovative Predictability, Computability, and Stability (PCS) framework to assess the trustworthiness and relevance of data-driven results relative to three sources of uncertainty that arise throughout the data science life cycle: the human decisions and judgment calls made during data collection, cleaning, and modeling. By providing real-world data case studies, intuitive explanations of common statistical and machine learning techniques, and supplementary R and Python code, Veridical Data Science offers a clear and actionable guide for conducting responsible data science. Requiring little background knowledge, this lucid, self-contained textbook provides a solid foundation and principled framework for future study of advanced methods in machine learning, statistics, and data science. Presents the Predictability, Computability, and Stability (PCS) methodology for producing trustworthy data-driven results Teaches how a data science project should be conducted from beginning to end, including extensive discussion of the data scientist's decision-making process Cultivates critical thinking throughout the entire data science life cycle Provides practical examples and illuminating case studies of real-world data analysis problems with associated code, exercises, and solutions Suitable for advanced undergraduate and graduate students, domain scientists, and practitioners
Foundations Of Data Science
DOWNLOAD
Author : Dr. M. Muthamizh Selvam
language : en
Publisher: RK Publication
Release Date : 2024-09-05
Foundations Of Data Science written by Dr. M. Muthamizh Selvam and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-05 with Computers categories.
Foundations of Data Science is a comprehensive guide that introduces key concepts and techniques essential for understanding and analyzing data in the modern world. Foundational topics like statistics, probability, linear algebra, and machine learning, offering practical insights and applications in real-world data science. With a focus on both theory and implementation, it is designed for students and professionals seeking to build a solid grounding in data science principles and develop skills in data-driven problem-solving, analysis, and predictive modeling across diverse domains.