Introducing Machine Learning

DOWNLOAD
Download Introducing Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introducing Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introducing Machine Learning
DOWNLOAD
Author : Dino Esposito
language : en
Publisher: Microsoft Press
Release Date : 2020-01-31
Introducing Machine Learning written by Dino Esposito and has been published by Microsoft Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
An Introduction To Machine Learning
DOWNLOAD
Author : Gopinath Rebala
language : en
Publisher: Springer
Release Date : 2019-05-07
An Introduction To Machine Learning written by Gopinath Rebala and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-07 with Technology & Engineering categories.
Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any priorknowledge of the topic; Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning; Not tied to any specific software language or hardware implementation.
Introduction To Machine Learning
DOWNLOAD
Author : Yves Kodratoff
language : en
Publisher: Elsevier
Release Date : 2014-06-28
Introduction To Machine Learning written by Yves Kodratoff and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Computers categories.
A textbook suitable for undergraduate courses in machine learningand related topics, this book provides a broad survey of the field.Generous exercises and examples give students a firm grasp of theconcepts and techniques of this rapidly developing, challenging subject. Introduction to Machine Learning synthesizes and clarifiesthe work of leading researchers, much of which is otherwise availableonly in undigested technical reports, journals, and conference proceedings.Beginning with an overview suitable for undergraduate readers, Kodratoffestablishes a theoretical basis for machine learning and describesits technical concepts and major application areas. Relevant logicprogramming examples are given in Prolog. Introduction to Machine Learning is an accessible and originalintroduction to a significant research area.
Machine Learning For Kids
DOWNLOAD
Author : Dale Lane
language : en
Publisher: No Starch Press
Release Date : 2021-01-19
Machine Learning For Kids written by Dale Lane and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-19 with Computers categories.
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Introduction To Machine Learning With Python
DOWNLOAD
Author : Andreas C. Müller
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-09-26
Introduction To Machine Learning With Python written by Andreas C. Müller and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-26 with Computers categories.
Many Python developers are curious about what machine learning is and how it can be concretely applied to solve issues faced in businesses handling medium to large amount of data. Machine Learning with Python teaches you the basics of machine learning and provides a thorough hands-on understanding of the subject.You'll learn important machine learning concepts and algorithms, when to use them, and how to use them. The book will cover a machine learning workflow: data preprocessing and working with data, training algorithms, evaluating results, and implementing those algorithms into a production-level system.
Introducing Hr Analytics With Machine Learning
DOWNLOAD
Author : Christopher M. Rosett
language : en
Publisher: Springer Nature
Release Date : 2021-06-14
Introducing Hr Analytics With Machine Learning written by Christopher M. Rosett and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-14 with Psychology categories.
This book directly addresses the explosion of literature about leveraging analytics with employee data and how organizational psychologists and practitioners can harness new information to help guide positive change in the workplace. In order for today’s organizational psychologists to successfully work with their partners they must go beyond behavioral science into the realms of computing and business acumen. Similarly, today’s data scientists must appreciate the unique aspects of behavioral data and the special circumstances which surround HR data and HR systems. Finally, traditional HR professionals must become familiar with research methods, statistics, and data systems in order to collaborate with these new specialized partners and teams. Despite the increasing importance of this diversity of skill, many organizations are still unprepared to build teams with the comprehensive skills necessary to have high performing HR Analytics functions. And importantly, all these considerations are magnified by the introduction and acceleration of machine learning in HR. This book will serve as an introduction to these areas and provide guidance on building the connectivity across domains required to establish well-rounded skills for individuals and best practices for organizations when beginning to apply advanced analytics to workforce data. It will also introduce machine learning and where it fits within the larger HR Analytics framework by explaining many of its basic tenets and methodologies. By the end of the book, readers will understand the skills required to do advanced HR analytics well, as well as how to begin designing and applying machine learning within a larger human capital strategy.
An Introduction To Machine Learning
DOWNLOAD
Author : Miroslav Kubat
language : en
Publisher: Springer
Release Date : 2017-08-31
An Introduction To Machine Learning written by Miroslav Kubat and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-31 with Computers categories.
This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.
Introduction To Machine Learning With Python
DOWNLOAD
Author : Andreas C. Müller
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-09-26
Introduction To Machine Learning With Python written by Andreas C. Müller and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-26 with Computers categories.
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills
Machine Learning Fundamentals
DOWNLOAD
Author : Hui Jiang
language : en
Publisher: Cambridge University Press
Release Date : 2021-11-25
Machine Learning Fundamentals written by Hui Jiang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-25 with Computers categories.
A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications.
Introduction To Machine Learning And Bioinformatics
DOWNLOAD
Author : Sushmita Mitra
language : en
Publisher: CRC Press
Release Date : 2008-06-05
Introduction To Machine Learning And Bioinformatics written by Sushmita Mitra and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-05 with Business & Economics categories.
Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bio