[PDF] Fracture Propagation In Naturally Fractured Reservoirs - eBooks Review

Fracture Propagation In Naturally Fractured Reservoirs


Fracture Propagation In Naturally Fractured Reservoirs
DOWNLOAD

Download Fracture Propagation In Naturally Fractured Reservoirs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fracture Propagation In Naturally Fractured Reservoirs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Fracture Propagation In Naturally Fractured Reservoirs


Fracture Propagation In Naturally Fractured Reservoirs
DOWNLOAD
Author : Hunjoo Peter Lee
language : en
Publisher:
Release Date : 2015

Fracture Propagation In Naturally Fractured Reservoirs written by Hunjoo Peter Lee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


Investigations of hydrocarbons in tight formations require understanding of hydraulic fracturing in order to optimize the production and recovery of oil and natural gas. The classic description of hydraulic fracture is a single bi-wing planar feature, however, field observations show that hydraulic fracture growth in naturally fractured formations like shale is complex. Lack of knowledge concerning the remote stress impact and the interaction with planes of weakness on a fracture propagation trajectory leads to inaccurate predictions of the fracture geometry and the surface area required for the production estimation. Most studies in engineering mechanics extended the standard mixed-mode fracture propagation models, based on the near tip approximations, to include the impact of the tensile crack-parallel stress on the fracture propagation path. However, for fractures in the subsurface, the remote stress is compression, and internal fluid pressure or frictional stress become important in the near-tip stress field and the propagation trajectory. The Modified Maximum Tangential Principal Stress criterion (MMTPS-criterion) was introduced to address and evaluate the remote and internal crack stresses in the propagation path. The predictions of the fracture propagation angles by the MMTPS-criterion agreed with published experimental results of fractures propagating under both tensile and compressive external loads. In addition, the predictions matched well with uniaxial compression tests on hydrostone samples with the critical radial distance, defined by the process zone size, for open fractures that satisfy the Small Scale Yielding conditions. For short open fractures, a larger critical radial distance was required to correspond with the experimental results. The MMTPS-criterion was also capable of predicting lower propagation angles for closed cracks with higher friction coefficients. Preexisting discontinuities in shale, including natural fractures and bedding, act as planes of weakness that divert fracture propagation. To investigate the influences of weak planes on hydraulic fracture propagation, I performed Semi-Circular Bend (SCB) tests on Marcellus shale core samples containing calcite-filled natural fractures (veins). The approach angle of the induced fracture to the veins and the thickness of the veins had a strong influence on propagation. As the apprach angle became more oblique to the induced fracture plane, and as the vein got thicker, the induced fracture was more likely to divert into the vein. Microstructural analysis of tested samples showed that the induced fracture propagated in the middle of the vein rahter than the interface between vein and the rock matrix. Cleavage planes and fluid inclusion trails in the vein cements exerted some control on the fracture path. By combining the experimental results with theoretical fracture-mechanics arguments, the fracture toughness of the calcite veins was estimated to range from 0.99 MPa [square root of m] to 1.14 MPa [square root of m], depending on the value used for the Young's modulus of the calcite vein material. Measured fracture toughness of unfractured Marcellus shale was 0.64 MPa [square root of m]. A Discrete Element Method (DEM) based numerical modeling software, Particle Flow Code in three-dimensions (PFC3D), was utilized to reproduce and analyze the experimental results of Marcellus shale samples. The trend of numerical results correlated with the interaction feature of the experimental results for various approach angel and thickness (i.e., aperture) of the vein. Further sensitivity analysis on vein properties indicated that veins with lower stranght and higher stiffness contribute to more fracture diversion than veins with higher strenght and lower stiffness. Additionally, parallel bond breakages in the model show that microcracks were generated inside the vein before the induced fracture encountered the vein especially for the veins with higher stiffnesses when compared to the rock matrix. Most of the bond failure mode inside the vein and the induced fracture was tensile rather that shear mode.



Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs


Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs
DOWNLOAD
Author : Arash Dahi Taleghani
language : en
Publisher:
Release Date : 2009

Analysis Of Hydraulic Fracture Propagation In Fractured Reservoirs written by Arash Dahi Taleghani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Gas reservoirs categories.


Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic fracturing is one of the main stimulating techniques to enhance recovery from these fractured reservoirs. Although hydraulic fracturing has been used for decades for the stimulation of tight gas reservoirs, a thorough understanding of the interaction between induced hydraulic fractures and natural fractures is still lacking. Recent examples of hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture geometry is a common occurrence. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Large populations of natural fractures that exist in formations such as the Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even though there is no porosity in the sealed fractures, they may still serve as weak paths for fracture initiation and/or for diverting the path of the growing hydraulic fractures. Performing hydraulic fracture design calculations under these complex conditions requires modeling of fracture intersections and tracking fluid fronts in the network of reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed natural fractures and the intact rock toughness in hydraulic fracturing are studied. Accordingly, the role of the pre-existing fracture geometry is also investigated. The results provide some explanations for significant differences in hydraulic fracturing in naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this research, an extended finite element method (XFEM) code is developed to simulate fracture propagation, initiation and intersection. The motivation behind applying XFEM are the desire to avoid remeshing in each step of the fracture propagation, being able to consider arbitrary varying geometry of natural fractures and the insensitivity of fracture propagation to mesh geometry. New modifications are introduced into XFEM to improve stress intensity factor calculations, including fracture intersection criteria into the model and improving accuracy of the solution in near crack tip regions. The presented coupled fluid flow-fracture mechanics simulations extend available modeling efforts and provide a unified framework for evaluating fracture design parameters and their consequences. Results demonstrate that fracture pattern complexity is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, the natural fracture cement strength, and the approach angle of the hydraulic fracture to the natural fracture. Previous studies (mostly based on frictional fault stability analysis) have concentrated on predicting the onset of natural fracture failure. However, the use of fracture mechanics and XFEM makes it possible to evaluate the progression of fracture growth over time as fluid is diverted into the natural fractures. Analysis shows that the growing hydraulic fracture may exert enough tensile and/or shear stresses on cemented natural fractures that they may be opened or slip in advance of hydraulic fracture tip arrival, while under some conditions, natural fractures will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy of cements where, for cases below this threshold, hydraulic fractures divert into the natural fractures. The value of this threshold is calculated for different fracture set orientations. Finally, detailed pressure profile and aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture propagation conditions. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We introduce a new more general criterion for fracture propagation at the intersections. We present a complex hydraulic fracture pattern propagation model based on the Extended Finite Element Method as a design tool that can be used to optimize treatment parameters under complex propagation conditions.



The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation


The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation
DOWNLOAD
Author : Weiwei Wang
language : en
Publisher:
Release Date : 2017

The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation written by Weiwei Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Microseismic events, which are generated during hydraulic fracturing treatments, suggest that a complicated fracture network develops in many naturally−fractured unconventional reservoirs. Deformation along weak planes, such as cemented natural fractures, has been proposed as one of the possible reasons for fracture network complexity. Cemented natural fractures widely exist in shale reservoirs. They are diverse in composition and size, depending on the burial condition, the composition of the rock matrix, and the geochemical environment. The interaction between cemented natural fractures with hydraulic fractures generated as part of the reservoir stimulation are thought to impact hydraulic fracture propagation. Previous studies mostly treated natural fractures as frictional interfaces without considering the actual cement fillings. In this study, I analyzed the effect of cemented natural fractures on hydraulic fracture propagation by considering natural fracture thickness, mechanical properties and rock−cement interface bond strength. Firstly, I conducted a series of semi−circular bend (SCB) tests and corresponding numerical simulations to study the interaction between hydraulic and natural fractures. The SCB tests are attractive in general because of their simple setup with consistent results. The experimental results also served as a validation for numerical model. Two drawbacks of the SCB tests include that the test is unconfined and there is no fluid component. Numerical modeling can then be applied to extend results beyond these shortcomings. Synthetic hydrostone samples with embedded inclusions of different mechanical properties were used to mimic rock with cemented natural fractures. Experimental results identified several parameters that could be used to explain hydraulic fractures interaction with cemented natural fractures. The SCB test conditions that promoted fracture crossing were near−orthogonal approach angles, small natural fracture thicknesses, and strong rock−cement interfaces. Such conditions in a reservoir would promote long hydraulic fractures and less complicated fracture networks. In contrast, the SCB test conditions that caused fracture diverting were more oblique approach angles, large natural fracture thicknesses, and weak rock−cement interfaces, resulting in short hydraulic fractures and more complicated fracture networks. The SCB tests using synthetic rock samples provided insights into the hydraulic fracture propagation in naturally−fractured reservoirs. Through the numerical modeling with the finite element code in Abaqus, the impact of fluid driven fracturing on fracture−fracture interaction was investigated. Fracture propagation in two dimensions was modeled using the cohesive elements and anisotropic compressive remote stress conditions. Results suggest that if the natural fracture thickness is considered, the commonly used fracture crossing/diverting criterion will overestimate the hydraulic fracture crossing scenario. Factors including modulus contrast and coefficient of friction also influence hydraulic fracture interaction with natural fractures. An application of this work is the case of how bedding−parallel veins will affect hydraulic fracture height growth. Such natural fractures are abundant in the unconventional resource play in the Vaca Muerta formation in Argentina. When the rock−cement coefficient of friction is around 0.4−0.5, which most likely represents shale reservoirs, hydraulic fracture crossing behavior is affected by the modulus contrast between natural fractures and host rock as well as the natural fracture thickness.



Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments


Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments
DOWNLOAD
Author : Benjamin Lee Bahorich
language : en
Publisher:
Release Date : 2012

Examining The Effect Of Cemented Natural Fractures On Hydraulic Fracture Propagation In Hydrostone Block Experiments written by Benjamin Lee Bahorich and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


Micro seismic data and coring studies suggest that hydraulic fractures interact heavily with natural fractures creating complex fracture networks in naturally fractured reservoirs such as the Barnett shale, the Eagle Ford shale, and the Marcellus shale. However, since direct observations of subsurface hydraulic fracture geometries are incomplete or nonexistent, we look to properly scaled experimental research and computer modeling based on realistic assumptions to help us understand fracture intersection geometries. Most experimental analysis of this problem has focused on natural fractures with frictional interfaces. However, core observations from the Barnett and other shale plays suggest that natural fractures are largely cemented. To examine hydraulic fracture interactions with cemented natural fractures, we performed 9 hydraulic fracturing experiments in gypsum cement blocks that contained embedded planar glass, sandstone, and plaster discontinuities which acted as proxies for cemented natural fractures. There were three main fracture intersection geometries observed in our experimental program. 1) A hydraulic fracture is diverted into a different propagation path(s) along a natural fracture. 2) A taller hydraulic fracture bypasses a shorter natural fracture by propagating around it via height growth while also separating the weakly bonded interface between the natural fracture and the host rock. 3) A hydraulic fracture bypasses a natural fracture and also diverts down it to form separate fractures. The three main factors that seemed to have the strongest influence on fracture intersection geometry were the angle of intersection, the ratio of hydraulic fracture height to natural fracture height, and the differential stress. Our results show that bypass, separation of weakly bonded interfaces, diversion, and mixed mode propagation are likely in hydraulic fracture intersections with cemented natural fractures. The impact of this finding is that we need fully 3D computer models capable of accounting for bypass and mixed mode I-III fracture propagation in order to realistically simulate subsurface hydraulic fracture geometries.



Hydraulic Fracture Modeling In Naturally Fractured Reservoirs


Hydraulic Fracture Modeling In Naturally Fractured Reservoirs
DOWNLOAD
Author : Kaustubh Shrivastava
language : en
Publisher:
Release Date : 2019

Hydraulic Fracture Modeling In Naturally Fractured Reservoirs written by Kaustubh Shrivastava and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Hydraulic fracturing of horizontal wells is one of the key technological breakthroughs that has led to the shale revolution. Hydraulic fracturing models are used to engineer hydraulic fracture design and optimize production. Typically, hydraulic fracturing models treat hydraulic fractures as planar, bi-wing fractures. However, recent core-through investigations have suggested that during hydraulic fracturing in naturally fractured reservoirs, complex hydraulic fracture geometries can be created due to the interaction of the growing hydraulic fracture with natural fractures. This limits the application of planar fracture models for optimizing hydraulic fracturing design in naturally fractured reservoirs. In this research, we present a novel three-dimensional displacement discontinuity method based hydraulic fracturing simulator that allows us to model hydraulic fracture growth in the presence of natural fractures along with proppant transport in an efficient manner. The model developed in this dissertation is used to investigate the interaction of a hydraulic fracture with natural fractures and study the transport of proppant in the resulting complex fracture networks. This investigation gives us novel insight into the influence of fracture geometry and stress interference on the final distribution of proppant in fracture networks. Based on this investigation, suggestions are made to improve proppant transport in complex fracture networks. In order to correctly capture the effect of natural fractures on fracture growth, knowledge about the distribution of natural fractures in the reservoir is imperative. Typically, little is known about the in-situ natural fracture distribution, as direct observation of the reservoir is not possible. A novel technique of synthetic coring is developed to create a discrete fracture network (DFN) from core data, and it is used to create a DFN based on the Hydraulic Fracturing Test Site #1 data. Hydraulic fracture propagation is modeled in the created DFN, and the results are compared with field observations. As the reservoir may contain thousands of natural fractures, simulations in a realistic DFN can be computationally very expensive. In order to reduce the computational requirements of the simulator, we present a novel predictor step based on the local linearization method that provides a better initial guess for solving the fluid-solid interaction problem. This is shown to reduce computational time significantly. A novel technique, Extended Adaptive Integral Method, to speed up the simulator is developed. The method uses an effective medium to represent the interaction between displacement discontinuity elements and reduces the order of complexity of solving the geomechanical system of equations from O(N2) to O(NlogN). The novel formulation of this method is presented, and sensitivity studies are conducted to show the improvement in computational efficiency



Numerical Modeling Of Complex Hydraulic Fracture Propagation In Layered Reservoirs With Auto Optimization


Numerical Modeling Of Complex Hydraulic Fracture Propagation In Layered Reservoirs With Auto Optimization
DOWNLOAD
Author : Jiacheng Wang (Ph. D.)
language : en
Publisher:
Release Date : 2022

Numerical Modeling Of Complex Hydraulic Fracture Propagation In Layered Reservoirs With Auto Optimization written by Jiacheng Wang (Ph. D.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.


Hydraulic fracturing brings economic unconventional reservoir developments, and multi-cluster completion designs result in complex hydraulic fracture geometries. Therefore, accurate yet efficient modeling of the propagation of multiple non-planar hydraulic fractures is desired to study the mechanisms of hydraulic fracture propagation and optimize field completion designs. In this research, a novel hydraulic fracture model is developed to simulate the propagation of multiple hydraulic fractures with proppant transport in layered and naturally fractured reservoirs. The simplified three-dimensional displacement discontinuity method (S3D DDM) is enhanced to compute the hydraulic fracture deformation and propagation with analytical fracture height growth and vertical width variation. Using a single row of DDM elements, the enhanced S3D DDM hydraulic fracture model computes the fully 3D geometries with a similar computational intensity to a 2D model. Then an Eulerian-Lagrangian proppant transport model is developed, where the slurry flow rate and pressure are solved within the Eulerian regime, and the movement of solid proppant particles is solved within the Lagrangian regime. The adaptive proppant gridding scheme in the model allows a smaller grid size at the earlier fracturing stage for higher resolution and a larger grid size at the later fracturing stage for higher efficiency. Besides the physical model, an optimization module that utilizes advanced optimization algorithms such as genetic algorithm (GA) and pattern search algorithm (PSA) is proposed to automatically optimize the completion designs according to the preset targets. Numerical results show that hydraulic fracture propagation is under the combined influence of the in-situ stress, pumping schedule, natural fractures, and cluster placement. Hence, numerical simulation is needed to predict complex hydraulic fracture geometries under various geologic and completion settings. The complex hydraulic fracture geometries, together with fracturing fluid and proppant properties, also affect proppant placement. Moreover, the stress contrast at layer interfaces can cause proppant bridging and form barriers on the proppant transport path. The optimized completion designs increase effective hydraulic and propped areas, but they vary depending on the optimization targets. The developed hydraulic fracture model provides insights into the hydraulic fracturing process and benefits unconventional reservoir development



Geologic Analysis Of Naturally Fractured Reservoirs


Geologic Analysis Of Naturally Fractured Reservoirs
DOWNLOAD
Author : Ronald Nelson
language : en
Publisher: Elsevier
Release Date : 2001-08-24

Geologic Analysis Of Naturally Fractured Reservoirs written by Ronald Nelson and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-24 with Technology & Engineering categories.


Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs Provides real-life illustrations through case histories and field and laboratory data



Modeling Of Complex Hydraulic Fractures In Naturally Fractured Formations


Modeling Of Complex Hydraulic Fractures In Naturally Fractured Formations
DOWNLOAD
Author : Meng Cao (Ph. D.)
language : en
Publisher:
Release Date : 2023

Modeling Of Complex Hydraulic Fractures In Naturally Fractured Formations written by Meng Cao (Ph. D.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.


The formation of complex fracture networks with nonplanar and multistranded shapes, due to the interaction between hydraulic and natural fractures, has been indicated by cores, mine-back experiments, and multiple numerous fracture diagnostic techniques. Having a better understanding of the mechanisms and implications of creating complex fracture networks would be a big step in improving hydrocarbon recovery and geothermal energy in naturally fractured formations. This dissertation presents the development of an integrated fracturing- production/geothermal simulator that can simulate multiple fracture propagation in naturally fractured reservoirs. It provides a new model for the interaction between hydraulic and natural fractures, dynamically distributes fluid and partitions proppant among multiple perforation clusters, simulates fluid flow and heat transfer in the coupled fracture-matrix system in an efficient manner, and speeds up the numerical computation for large-scale problems. This integrated fracturing-production/geothermal simulator enables a very computationally efficient solution by combining the displacement discontinuity method (DDM) for fracture propagation with a general Green’s function solution for fluid flow and heat transfer from the matrix to the fracture since there is no need to discretize the matrix domain. The fracturing model solves stresses and fluid pressure in a fully coupled manner by using DDM for rock deformation and a finite volume method for fluid flow inside fractures. In addition, the fluid distribution and proppant partitioning among multiple perforation clusters are solved dynamically. The production/geothermal simulator computes pressure and temperature using a fully implicit method for the fracture network domain, and solves the reservoir domain by using a semi-analytical solution. A fast, adaptive integral method (AIM) is used to reduce the computational time significantly when solving for the displacement field in a large complex fracture network. The key to the fast Fourier transform (FFT)-based adaptive integral method is the fast matrix-vector multiplication algorithm. The large dense matrix is decomposed into far- field and near-field components. The far-field component is computed by using the uniformly spaced Cartesian grid, and this component provides the foundation to perform discrete fast Fourier transform. The sparse near-field component is calculated by using the grid for fracture elements. Based on the split of the dense matrix into far-field and near- field components, FFT is applied to accelerate the multiplication of matrix and vector since no dense matrices are used. Finally, the new model is applied to two separate field studies, the Hydraulic Fracturing Test Site #2 (HFTS #2) and the Utah Frontier Observatory for Research in Geothermal Energy (FORGE)



An Experimental And Numerical Investigation Into Hydraulic Fracture Propagation In Naturally Fractured Shale Gas Reservoirs


An Experimental And Numerical Investigation Into Hydraulic Fracture Propagation In Naturally Fractured Shale Gas Reservoirs
DOWNLOAD
Author : Betul Yildirim
language : en
Publisher:
Release Date : 2019

An Experimental And Numerical Investigation Into Hydraulic Fracture Propagation In Naturally Fractured Shale Gas Reservoirs written by Betul Yildirim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.




Applied Concepts In Fractured Reservoirs


Applied Concepts In Fractured Reservoirs
DOWNLOAD
Author : John C. Lorenz
language : en
Publisher: John Wiley & Sons
Release Date : 2020-01-03

Applied Concepts In Fractured Reservoirs written by John C. Lorenz and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-03 with Science categories.


A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core