[PDF] From Arithmetic To Zeta Functions - eBooks Review

From Arithmetic To Zeta Functions


From Arithmetic To Zeta Functions
DOWNLOAD

Download From Arithmetic To Zeta Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Arithmetic To Zeta Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Dynamical Spectral And Arithmetic Zeta Functions


Dynamical Spectral And Arithmetic Zeta Functions
DOWNLOAD
Author : Michel Laurent Lapidus
language : en
Publisher: American Mathematical Soc.
Release Date : 2001

Dynamical Spectral And Arithmetic Zeta Functions written by Michel Laurent Lapidus and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


The original zeta function was studied by Riemann as part of his investigation of the distribution of prime numbers. Other sorts of zeta functions were defined for number-theoretic purposes, such as the study of primes in arithmetic progressions. This led to the development of $L$-functions, which now have several guises. It eventually became clear that the basic construction used for number-theoretic zeta functions can also be used in other settings, such as dynamics, geometry, and spectral theory, with remarkable results. This volume grew out of the special session on dynamical, spectral, and arithmetic zeta functions held at the annual meeting of the American Mathematical Society in San Antonio, but also includes four articles that were invited to be part of the collection. The purpose of the meeting was to bring together leading researchers, to find links and analogies between their fields, and to explore new methods. The papers discuss dynamical systems, spectral geometry on hyperbolic manifolds, trace formulas in geometry and in arithmetic, as well as computational work on the Riemann zeta function. Each article employs techniques of zeta functions. The book unifies the application of these techniques in spectral geometry, fractal geometry, and number theory. It is a comprehensive volume, offering up-to-date research. It should be useful to both graduate students and confirmed researchers.



From Arithmetic To Zeta Functions


From Arithmetic To Zeta Functions
DOWNLOAD
Author : Jürgen Sander
language : en
Publisher: Springer
Release Date : 2016-12-29

From Arithmetic To Zeta Functions written by Jürgen Sander and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-29 with Mathematics categories.


This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.



Arithmetical Functions


Arithmetical Functions
DOWNLOAD
Author : Komaravolu Chandrasekharan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Arithmetical Functions written by Komaravolu Chandrasekharan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the manuscript and correcting the proofs. K. Chandrasekharan July 1970 Contents Chapter I The prime number theorem and Selberg's method § 1. Selberg's fonnula . . . . . . 1 § 2. A variant of Selberg's formula 6 12 § 3. Wirsing's inequality . . . . . 17 § 4. The prime number theorem. .



Fractal Geometry Complex Dimensions And Zeta Functions


Fractal Geometry Complex Dimensions And Zeta Functions
DOWNLOAD
Author : Michel Lapidus
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-20

Fractal Geometry Complex Dimensions And Zeta Functions written by Michel Lapidus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-20 with Mathematics categories.


Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.



Arithmetic Algebraic Geometry


Arithmetic Algebraic Geometry
DOWNLOAD
Author : G., van der Geer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Arithmetic Algebraic Geometry written by G., van der Geer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Inspired by these exciting developments, the editors organized a meeting at Texel in 1989 and invited a number of mathematicians to write papers for this volume. Some of these papers were presented at the meeting; others arose from the discussions that took place. They were all chosen for their quality and relevance to the application of algebraic geometry to arithmetic problems. Topics include: arithmetic surfaces, Chjerm functors, modular curves and modular varieties, elliptic curves, Kolyvagin’s work, K-theory and Galois representations. Besides the research papers, there is a letter of Parshin and a paper of Zagier with is interpretations of the Birch-Swinnerton-Dyer Conjecture. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.



Automorphic Forms Representation Theory And Arithmetic


Automorphic Forms Representation Theory And Arithmetic
DOWNLOAD
Author : S. Gelbart
language : en
Publisher: Springer
Release Date : 2013-12-01

Automorphic Forms Representation Theory And Arithmetic written by S. Gelbart and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.


International Colloquium an Automorphic Forms, Representation Theory and Arithmetic. Published for the Tata Institute of Fundamental Research, Bombay



Zeta Functions


Zeta Functions
DOWNLOAD
Author : Alan David Thomas
language : en
Publisher: Pitman Publishing
Release Date : 1977

Zeta Functions written by Alan David Thomas and has been published by Pitman Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Mathematics categories.




The Riemann Zeta Function


The Riemann Zeta Function
DOWNLOAD
Author : Anatoly A. Karatsuba
language : en
Publisher: Walter de Gruyter
Release Date : 2011-05-03

The Riemann Zeta Function written by Anatoly A. Karatsuba and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-03 with Mathematics categories.


No detailed description available for "The Riemann Zeta-Function".



Zeta Functions Of Groups And Rings


Zeta Functions Of Groups And Rings
DOWNLOAD
Author : Marcus du Sautoy
language : en
Publisher: Springer
Release Date : 2007-12-10

Zeta Functions Of Groups And Rings written by Marcus du Sautoy and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-10 with Mathematics categories.


Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. It explores the analytic behavior of these functions together with an investigation of functional equations. The book examines many important examples of zeta functions, providing an important database of explicit examples and methods for calculation.



Introduction To The Arithmetic Theory Of Automorphic Functions


Introduction To The Arithmetic Theory Of Automorphic Functions
DOWNLOAD
Author : Gorō Shimura
language : en
Publisher: Princeton University Press
Release Date : 1971-08-21

Introduction To The Arithmetic Theory Of Automorphic Functions written by Gorō Shimura and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-08-21 with Mathematics categories.


The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.