Functorial Knot Theory

DOWNLOAD
Download Functorial Knot Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functorial Knot Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Functorial Knot Theory Categories Of Tangles Coherence Categorical Deformations And Topological Invariants
DOWNLOAD
Author : David N Yetter
language : en
Publisher: World Scientific
Release Date : 2001-04-16
Functorial Knot Theory Categories Of Tangles Coherence Categorical Deformations And Topological Invariants written by David N Yetter and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-04-16 with Mathematics categories.
Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory.This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations.
Functorial Knot Theory
DOWNLOAD
Author : David N. Yetter
language : en
Publisher: World Scientific
Release Date : 2001
Functorial Knot Theory written by David N. Yetter and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber''s deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations. Contents: Knots and Categories: Monoidal Categories, Functors and Natural Transformations; A Digression on Algebras; Knot Polynomials; Smooth Tangles and PL Tangles; A Little Enriched Category Theory; Deformations: Deformation Complexes of Semigroupal Categories and Functors; First Order Deformations; Units; Extrinsic Deformations of Monoidal Categories; Categorical Deformations as Proper Generalizations of Classical Notions; and other papers. Readership: Mathematicians and theoretical physicists.
Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012
Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Linknot Knot Theory By Computer
DOWNLOAD
Author : Slavik Vlado Jablan
language : en
Publisher: World Scientific
Release Date : 2007-11-16
Linknot Knot Theory By Computer written by Slavik Vlado Jablan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-16 with Mathematics categories.
LinKnot — Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics.The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves.Hands-on computations using Mathematica or the webMathematica package LinKnot and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links.Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.
Combinatorial Knot Theory
DOWNLOAD
Author : Roger A Fenn
language : en
Publisher: World Scientific
Release Date : 2024-11-27
Combinatorial Knot Theory written by Roger A Fenn and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-27 with Mathematics categories.
A classic knot is an embedded simple loop in 3-dimensional space. It can be described as a 4-valent planar graph or network in the horizontal plane, with the vertices or crossings corresponding to double points of a projection. At this stage we have the shadow of the knot defined by the projection. We can reconstruct the knot by lifting the crossings into two points in space, one above the other. This information is preserved at the vertices by cutting the arc which appears to go under the over crossing arc. We can then act on this diagram of the knot using the famous Reidemeister moves to mimic the motion of the knot in space. The result is classic combinatorial knot theory. In recent years, many different types of knot theories have been considered where the information stored at the crossings determines how the Reidemeister moves are used, if at all.In this book, we look at all these new theories systematically in a way which any third-year undergraduate mathematics student would understand. This book can form the basis of an undergraduate course or as an entry point for a postgraduate studying topology.
Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012
Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Knots And Links
DOWNLOAD
Author : Dale Rolfsen
language : en
Publisher: American Mathematical Soc.
Release Date : 2003
Knots And Links written by Dale Rolfsen and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Physical And Numerical Models In Knot Theory
DOWNLOAD
Author : Jorge Alberto Calvo
language : en
Publisher: World Scientific
Release Date : 2005
Physical And Numerical Models In Knot Theory written by Jorge Alberto Calvo and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
The physical properties of knotted and linked configurations in space have long been of interest to mathematicians. More recently, these properties have become significant to biologists, physicists, and engineers among others. Their depth of importance and breadth of application are now widely appreciated and valuable progress continues to be made each year.This volume presents several contributions from researchers using computers to study problems that would otherwise be intractable. While computations have long been used to analyze problems, formulate conjectures, and search for special structures in knot theory, increased computational power has made them a staple in many facets of the field. The volume also includes contributions concentrating on models researchers use to understand knotting, linking, and entanglement in physical and biological systems. Topics include properties of knot invariants, knot tabulation, studies of hyperbolic structures, knot energies, the exploration of spaces of knots, knotted umbilical cords, studies of knots in DNA and proteins, and the structure of tight knots. Together, the chapters explore four major themes: physical knot theory, knot theory in the life sciences, computational knot theory, and geometric knot theory.
Grid Homology For Knots And Links
DOWNLOAD
Author : Peter S. Ozsváth
language : en
Publisher: American Mathematical Soc.
Release Date : 2015-11-30
Grid Homology For Knots And Links written by Peter S. Ozsváth and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-30 with Education categories.
Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams.
Encyclopedia Of Knot Theory
DOWNLOAD
Author : Colin Adams
language : en
Publisher: CRC Press
Release Date : 2021-02-10
Encyclopedia Of Knot Theory written by Colin Adams and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Mathematics categories.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory