Linknot Knot Theory By Computer

DOWNLOAD
Download Linknot Knot Theory By Computer PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linknot Knot Theory By Computer book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Linknot
DOWNLOAD
Author : Slavik V. Jablan
language : en
Publisher: World Scientific
Release Date : 2007
Linknot written by Slavik V. Jablan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
LinKnot - Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.
Linknot Knot Theory By Computer
DOWNLOAD
Author : Slavik Vlado Jablan
language : en
Publisher: World Scientific
Release Date : 2007-11-16
Linknot Knot Theory By Computer written by Slavik Vlado Jablan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-16 with Mathematics categories.
LinKnot — Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics.The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves.Hands-on computations using Mathematica or the webMathematica package LinKnot and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links.Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.
Combinatorial Knot Theory
DOWNLOAD
Author : Roger A Fenn
language : en
Publisher: World Scientific
Release Date : 2024-11-27
Combinatorial Knot Theory written by Roger A Fenn and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-27 with Mathematics categories.
A classic knot is an embedded simple loop in 3-dimensional space. It can be described as a 4-valent planar graph or network in the horizontal plane, with the vertices or crossings corresponding to double points of a projection. At this stage we have the shadow of the knot defined by the projection. We can reconstruct the knot by lifting the crossings into two points in space, one above the other. This information is preserved at the vertices by cutting the arc which appears to go under the over crossing arc. We can then act on this diagram of the knot using the famous Reidemeister moves to mimic the motion of the knot in space. The result is classic combinatorial knot theory. In recent years, many different types of knot theories have been considered where the information stored at the crossings determines how the Reidemeister moves are used, if at all.In this book, we look at all these new theories systematically in a way which any third-year undergraduate mathematics student would understand. This book can form the basis of an undergraduate course or as an entry point for a postgraduate studying topology.
Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012
Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Knot Theory
DOWNLOAD
Author : Vassily Olegovich Manturov
language : en
Publisher: CRC Press
Release Date : 2018-04-17
Knot Theory written by Vassily Olegovich Manturov and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Mathematics categories.
Over the last fifteen years, the face of knot theory has changed due to various new theories and invariants coming from physics, topology, combinatorics and alge-bra. It suffices to mention the great progress in knot homology theory (Khovanov homology and Ozsvath-Szabo Heegaard-Floer homology), the A-polynomial which give rise to strong invariants of knots and 3-manifolds, in particular, many new unknot detectors. New to this Edition is a discussion of Heegaard-Floer homology theory and A-polynomial of classical links, as well as updates throughout the text. Knot Theory, Second Edition is notable not only for its expert presentation of knot theory’s state of the art but also for its accessibility. It is valuable as a profes-sional reference and will serve equally well as a text for a course on knot theory.
Invariants And Pictures Low Dimensional Topology And Combinatorial Group Theory
DOWNLOAD
Author : Vassily Olegovich Manturov
language : en
Publisher: World Scientific
Release Date : 2020-04-22
Invariants And Pictures Low Dimensional Topology And Combinatorial Group Theory written by Vassily Olegovich Manturov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-22 with Mathematics categories.
This book contains an in-depth overview of the current state of the recently emerged and rapidly growing theory of Gnk groups, picture-valued invariants, and braids for arbitrary manifolds. Equivalence relations arising in low-dimensional topology and combinatorial group theory inevitably lead to the study of invariants, and good invariants should be strong and apparent. An interesting case of such invariants is picture-valued invariants, whose values are not algebraic objects, but geometrical constructions, like graphs or polyhedra.In 2015, V O Manturov defined a two-parametric family of groups Gnk and formulated the following principle: if dynamical systems describing a motion of n particles possess a nice codimension 1 property governed by exactly k particles then these dynamical systems possess topological invariants valued in Gnk.The book is devoted to various realisations and generalisations of this principle in the broad sense. The groups Gnk have many epimorphisms onto free products of cyclic groups; hence, invariants constructed from them are powerful enough and easy to compare. However, this construction does not work when we try to deal with points on a 2-surface, since there may be infinitely many geodesics passing through two points. That leads to the notion of another family of groups — Γnk, which give rise to braids on arbitrary manifolds yielding invariants of arbitrary manifolds.
Virtual Knots
DOWNLOAD
Author : Vasilii Olegovich Manturov
language : en
Publisher: World Scientific
Release Date : 2012
Virtual Knots written by Vasilii Olegovich Manturov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory.Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory.In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V O Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams.Graph-links can be treated as OC diagramless knot theoryOCO: such OC linksOCO have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory.
One Cocycles And Knot Invariants
DOWNLOAD
Author : Thomas Fiedler
language : en
Publisher: World Scientific
Release Date : 2023-01-04
One Cocycles And Knot Invariants written by Thomas Fiedler and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-04 with Mathematics categories.
One-Cocycles and Knot Invariants is about classical knots, i.e., smooth oriented knots in 3-space. It introduces discrete combinatorial analysis in knot theory in order to solve a global tetrahedron equation. This new technique is then used to construct combinatorial 1-cocycles in a certain moduli space of knot diagrams. The construction of the moduli space makes use of the meridian and the longitude of the knot. The combinatorial 1-cocycles are therefore lifts of the well-known Conway polynomial of knots, and they can be calculated in polynomial time. The 1-cocycles can distinguish loops consisting of knot diagrams in the moduli space up to homology. They give knot invariants when they are evaluated on canonical loops in the connected components of the moduli space. They are a first candidate for numerical knot invariants which can perhaps distinguish the orientation of knots.
Knots And Physics
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2013
Knots And Physics written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
An introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics.
Knot Theory And Its Applications
DOWNLOAD
Author : Krishnendu Gongopadhyay
language : en
Publisher: American Mathematical Soc.
Release Date : 2016-09-21
Knot Theory And Its Applications written by Krishnendu Gongopadhyay and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-21 with Mathematics categories.
This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.