[PDF] Knot Theory And Its Applications - eBooks Review

Knot Theory And Its Applications


Knot Theory And Its Applications
DOWNLOAD

Download Knot Theory And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knot Theory And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Knot Theory And Its Applications


Knot Theory And Its Applications
DOWNLOAD
Author : Kunio Murasugi
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-29

Knot Theory And Its Applications written by Kunio Murasugi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-29 with Mathematics categories.


Knot theory is a concept in algebraic topology that has found applications to a variety of mathematical problems as well as to problems in computer science, biological and medical research, and mathematical physics. This book is directed to a broad audience of researchers, beginning graduate students, and senior undergraduate students in these fields. The book contains most of the fundamental classical facts about the theory, such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials; also included are key newer developments and special topics such as chord diagrams and covering spaces. The work introduces the fascinating study of knots and provides insight into applications to such studies as DNA research and graph theory. In addition, each chapter includes a supplement that consists of interesting historical as well as mathematical comments. The author clearly outlines what is known and what is not known about knots. He has been careful to avoid advanced mathematical terminology or intricate techniques in algebraic topology or group theory. There are numerous diagrams and exercises relating the material. The study of Jones polynomials and the Vassiliev invariants are closely examined. "The book ...develops knot theory from an intuitive geometric-combinatorial point of view, avoiding completely more advanced concepts and techniques from algebraic topology...Thus the emphasis is on a lucid and intuitive exposition accessible to a broader audience... The book, written in a stimulating and original style, will serve as a first approach to this interesting field for readers with various backgrounds in mathematics, physics, etc. It is the first text developing recent topics as the Jones polynomial and Vassiliev invariants on a level accessible also for non-specialists in the field." -Zentralblatt Math



The Mathematics Of Knots


The Mathematics Of Knots
DOWNLOAD
Author : Markus Banagl
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-25

The Mathematics Of Knots written by Markus Banagl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-25 with Mathematics categories.


The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.



Introductory Lectures On Knot Theory


Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012

Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.



The Knot Book


The Knot Book
DOWNLOAD
Author : Colin Conrad Adams
language : en
Publisher: American Mathematical Soc.
Release Date : 2004

The Knot Book written by Colin Conrad Adams and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.



Handbook Of Knot Theory


Handbook Of Knot Theory
DOWNLOAD
Author : William Menasco
language : en
Publisher: Elsevier
Release Date : 2005-08-02

Handbook Of Knot Theory written by William Menasco and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-02 with Mathematics categories.


This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics



Linknot


Linknot
DOWNLOAD
Author : Slavik V. Jablan
language : en
Publisher: World Scientific
Release Date : 2007

Linknot written by Slavik V. Jablan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


LinKnot OCo Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Hands-on computations using Mathematica or the webMathematica package LinKnot (available online at http: //math.ict.edu.rs ) and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata. Sample Chapter(s). 1.1 Basic graph theory (176 KB). Contents: Notation of Knots and Links; Recognition and Generation of Knots and Links; History of Knot Theory and Applications of Knots and Links. Readership: Researchers interested in knot theory and users of Mathematica."



A Survey Of Knot Theory


A Survey Of Knot Theory
DOWNLOAD
Author : Akio Kawauchi
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

A Survey Of Knot Theory written by Akio Kawauchi and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.



An Introduction To Knot Theory


An Introduction To Knot Theory
DOWNLOAD
Author : W.B.Raymond Lickorish
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

An Introduction To Knot Theory written by W.B.Raymond Lickorish and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This account is an introduction to mathematical knot theory, the theory of knots and links of simple closed curves in three-dimensional space. Knots can be studied at many levels and from many points of view. They can be admired as artifacts of the decorative arts and crafts, or viewed as accessible intimations of a geometrical sophistication that may never be attained. The study of knots can be given some motivation in terms of applications in molecular biology or by reference to paral lels in equilibrium statistical mechanics or quantum field theory. Here, however, knot theory is considered as part of geometric topology. Motivation for such a topological study of knots is meant to come from a curiosity to know how the ge ometry of three-dimensional space can be explored by knotting phenomena using precise mathematics. The aim will be to find invariants that distinguish knots, to investigate geometric properties of knots and to see something of the way they interact with more adventurous three-dimensional topology. The book is based on an expanded version of notes for a course for recent graduates in mathematics given at the University of Cambridge; it is intended for others with a similar level of mathematical understanding. In particular, a knowledge of the very basic ideas of the fundamental group and of a simple homology theory is assumed; it is, after all, more important to know about those topics than about the intricacies of knot theory.



Hyperbolic Knot Theory


Hyperbolic Knot Theory
DOWNLOAD
Author : Jessica S. Purcell
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-10-06

Hyperbolic Knot Theory written by Jessica S. Purcell and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-06 with Education categories.


This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.



An Index Of A Graph With Applications To Knot Theory


An Index Of A Graph With Applications To Knot Theory
DOWNLOAD
Author : Kunio Murasugi
language : en
Publisher: American Mathematical Soc.
Release Date : 1993

An Index Of A Graph With Applications To Knot Theory written by Kunio Murasugi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.


There are three chapters to the memoir. The first defines and develops the notion of the index of a graph. The next chapter presents the general application of the graph index to knot theory. The last section is devoted to particular examples, such as determining the braid index of alternating pretzel links. A second result shows that for an alternating knot with Alexander polynomial having leading coefficient less than 4 in absolute value, the braid index is determined by polynomial invariants.