Fundamentals Of Hyperbolic Geometry

DOWNLOAD
Download Fundamentals Of Hyperbolic Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Hyperbolic Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fundamentals Of Hyperbolic Manifolds
DOWNLOAD
Author : R. D. Canary
language : en
Publisher: Cambridge University Press
Release Date : 2006-04-13
Fundamentals Of Hyperbolic Manifolds written by R. D. Canary and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-13 with Mathematics categories.
Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.
Foundations Of Hyperbolic Manifolds
DOWNLOAD
Author : John Ratcliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Foundations Of Hyperbolic Manifolds written by John Ratcliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
A Gyrovector Space Approach To Hyperbolic Geometry
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2009
A Gyrovector Space Approach To Hyperbolic Geometry written by Abraham A. Ungar and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
Lectures On Hyperbolic Geometry
DOWNLOAD
Author : Riccardo Benedetti
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Lectures On Hyperbolic Geometry written by Riccardo Benedetti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In recent years hyperbolic geometry has been the object and the preparation for extensive study that has produced important and often amazing results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it reaches recent developments of the theory, the book is mainly addressed to graduate-level students approaching research, but it will also be a helpful and ready-to-use tool to the mature researcher. After collecting some classical material about the geometry of the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (of which a complete proof is given following Gromov and Thurston) and Margulis' lemma. These results form the basis for the study of the space of the hyperbolic manifolds in all dimensions (Chabauty and geometric topology); a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory. A large part is devoted to the three-dimensional case: a complete and elementary proof of the hyperbolic surgery theorem is given based on the possibility of representing three manifolds as glued ideal tetrahedra. The last chapter deals with some related ideas and generalizations (bounded cohomology, flat fiber bundles, amenable groups). This is the first book to collect this material together from numerous scattered sources to give a detailed presentation at a unified level accessible to novice readers.
Fundamentals Of Hyperbolic Geometry
DOWNLOAD
Author : Richard Douglas Canary
language : en
Publisher:
Release Date : 2006
Fundamentals Of Hyperbolic Geometry written by Richard Douglas Canary and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Geometry, Hyperbolic categories.
The Foundations Of Geometry And The Non Euclidean Plane
DOWNLOAD
Author : G.E. Martin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Foundations Of Geometry And The Non Euclidean Plane written by G.E. Martin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.
The Arithmetic Of Hyperbolic 3 Manifolds
DOWNLOAD
Author : Colin Maclachlan
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
The Arithmetic Of Hyperbolic 3 Manifolds written by Colin Maclachlan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
For the past 25 years, the Geometrization Program of Thurston has been a driving force for research in 3-manifold topology. This has inspired a surge of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as these manifolds form the largest and least well- understood class of compact 3-manifolds. Familiar and new tools from diverse areas of mathematics have been utilized in these investigations, from topology, geometry, analysis, group theory, and from the point of view of this book, algebra and number theory. This book is aimed at readers already familiar with the basics of hyperbolic 3-manifolds or Kleinian groups, and it is intended to introduce them to the interesting connections with number theory and the tools that will be required to pursue them. While there are a number of texts which cover the topological, geometric and analytical aspects of hyperbolic 3-manifolds, this book is unique in that it deals exclusively with the arithmetic aspects, which are not covered in other texts. Colin Maclachlan is a Reader in the Department of Mathematical Sciences at the University of Aberdeen in Scotland where he has served since 1968. He is a former President of the Edinburgh Mathematical Society. Alan Reid is a Professor in the Department of Mathematics at The University of Texas at Austin. He is a former Royal Society University Research Fellow, Alfred P. Sloan Fellow and winner of the Sir Edmund Whittaker Prize from The Edinburgh Mathematical Society. Both authors have published extensively in the general area of discrete groups, hyperbolic manifolds and low-dimensional topology.
Euclidean And Non Euclidean Geometry International Student Edition
DOWNLOAD
Author : Patrick J. Ryan
language : en
Publisher: Cambridge University Press
Release Date : 2009-09-04
Euclidean And Non Euclidean Geometry International Student Edition written by Patrick J. Ryan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-04 with Mathematics categories.
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.
Hyperbolic Manifolds
DOWNLOAD
Author : Albert Marden
language : en
Publisher: Cambridge University Press
Release Date : 2016-02
Hyperbolic Manifolds written by Albert Marden and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02 with Mathematics categories.
This study of hyperbolic geometry has both pedagogy and research in mind, and includes exercises and further reading for each chapter.