Fundamentals Of Hyperbolic Manifolds

DOWNLOAD
Download Fundamentals Of Hyperbolic Manifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Hyperbolic Manifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Foundations Of Hyperbolic Manifolds
DOWNLOAD
Author : John Ratcliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-08-23
Foundations Of Hyperbolic Manifolds written by John Ratcliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-23 with Mathematics categories.
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
Fundamentals Of Hyperbolic Geometry
DOWNLOAD
Author : Richard Douglas Canary
language : en
Publisher:
Release Date : 2014-05-14
Fundamentals Of Hyperbolic Geometry written by Richard Douglas Canary and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-14 with Geometry, Hyperbolic categories.
Reissued articles from two classic sources on hyperbolic manifolds with new sections describing recent work.
Fundamentals Of Hyperbolic Manifolds
DOWNLOAD
Author : R. D. Canary
language : en
Publisher: Cambridge University Press
Release Date : 2006-04-13
Fundamentals Of Hyperbolic Manifolds written by R. D. Canary and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-13 with Mathematics categories.
Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.
Foundations Of Hyperbolic Manifolds
DOWNLOAD
Author : John Ratcliffe
language : en
Publisher:
Release Date : 2014-01-15
Foundations Of Hyperbolic Manifolds written by John Ratcliffe and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.
Fundamentals Of Differential Geometry
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Fundamentals Of Differential Geometry written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.
Introduction To Lie Algebras And Representation Theory
DOWNLOAD
Author : J.E. Humphreys
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Introduction To Lie Algebras And Representation Theory written by J.E. Humphreys and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Foundations Of Computational Mathematics Hong Kong 2008
DOWNLOAD
Author : Felipe Cucker
language : en
Publisher: Cambridge University Press
Release Date : 2009-07-02
Foundations Of Computational Mathematics Hong Kong 2008 written by Felipe Cucker and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-02 with Mathematics categories.
Surveys and summaries of the latest research in numerical analysis, optimization, computer algebra and scientific computing.
Introduction To Elliptic Curves And Modular Forms
DOWNLOAD
Author : Neal I. Koblitz
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Introduction To Elliptic Curves And Modular Forms written by Neal I. Koblitz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This textbook covers the basic properties of elliptic curves and modular forms, with emphasis on certain connections with number theory. The ancient "congruent number problem" is the central motivating example for most of the book. My purpose is to make the subject accessible to those who find it hard to read more advanced or more algebraically oriented treatments. At the same time I want to introduce topics which are at the forefront of current research. Down-to-earth examples are given in the text and exercises, with the aim of making the material readable and interesting to mathematicians in fields far removed from the subject of the book. With numerous exercises (and answers) included, the textbook is also intended for graduate students who have completed the standard first-year courses in real and complex analysis and algebra. Such students would learn applications of techniques from those courses. thereby solidifying their under standing of some basic tools used throughout mathematics. Graduate stu dents wanting to work in number theory or algebraic geometry would get a motivational, example-oriented introduction. In addition, advanced under graduates could use the book for independent study projects, senior theses, and seminar work.
Zariski Geometries
DOWNLOAD
Author : Boris Zilber
language : en
Publisher: Cambridge University Press
Release Date : 2010-02-04
Zariski Geometries written by Boris Zilber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-02-04 with Mathematics categories.
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.