[PDF] Fundamentals Of Image Data Mining - eBooks Review

Fundamentals Of Image Data Mining


Fundamentals Of Image Data Mining
DOWNLOAD

Download Fundamentals Of Image Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Image Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Fundamentals Of Image Data Mining


Fundamentals Of Image Data Mining
DOWNLOAD
Author : Dengsheng Zhang
language : en
Publisher: Springer Nature
Release Date : 2021-06-25

Fundamentals Of Image Data Mining written by Dengsheng Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-25 with Computers categories.


This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Develops many new exercises (most with MATLAB code and instructions) Includes review summaries at the end of each chapter Analyses state-of-the-art models, algorithms, and procedures for image mining Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing Demonstrates how features like color, texture, and shape can be mined or extracted for image representation Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.



Fundamentals Of Data Mining In Genomics And Proteomics


Fundamentals Of Data Mining In Genomics And Proteomics
DOWNLOAD
Author : Werner Dubitzky
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-13

Fundamentals Of Data Mining In Genomics And Proteomics written by Werner Dubitzky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-13 with Science categories.


This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.



Techniques For Image Processing And Classifications In Remote Sensing


Techniques For Image Processing And Classifications In Remote Sensing
DOWNLOAD
Author : Robert A. Schowengerdt
language : en
Publisher: Academic Press
Release Date : 2012-12-02

Techniques For Image Processing And Classifications In Remote Sensing written by Robert A. Schowengerdt and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-02 with Technology & Engineering categories.


Techniques for Image Processing and Classifications in Remote Sensing provides an introduction to the fundamentals of computer image processing and classification (commonly called ""pattern recognition"" in other applications). The book begins with a discussion of digital scanners and imagery, and two key mathematical concepts for image processing and classification—spatial filtering and statistical pattern recognition. This is followed by separate chapters on image processing and classification techniques that are widely used in the remote sensing community. The emphasis throughout is on techniques that assist in the analysis of images, not particular applications of these techniques. The book also has four appendixes, featuring a bibliography; an introduction to computer binary data representation and image data formats; a discussion of interactive image processing; and a selection of exam questions from the Image Processing Laboratory course at the University of Arizona. This book is intended for use as either a primary source in an introductory image processing course or as a supplementary text in an intermediate-level remote sensing course. The academic level addressed is upper-division undergraduate or beginning graduate, and familiarity with calculus and basic vector and matrix concepts is assumed.



Data Mining


Data Mining
DOWNLOAD
Author : Richard J. Roiger
language : en
Publisher: CRC Press
Release Date : 2017-01-06

Data Mining written by Richard J. Roiger and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-06 with Business & Economics categories.


Data Mining: A Tutorial-Based Primer, Second Edition provides a comprehensive introduction to data mining with a focus on model building and testing, as well as on interpreting and validating results. The text guides students to understand how data mining can be employed to solve real problems and recognize whether a data mining solution is a feasible alternative for a specific problem. Fundamental data mining strategies, techniques, and evaluation methods are presented and implemented with the help of two well-known software tools. Several new topics have been added to the second edition including an introduction to Big Data and data analytics, ROC curves, Pareto lift charts, methods for handling large-sized, streaming and imbalanced data, support vector machines, and extended coverage of textual data mining. The second edition contains tutorials for attribute selection, dealing with imbalanced data, outlier analysis, time series analysis, mining textual data, and more. The text provides in-depth coverage of RapidMiner Studio and Weka’s Explorer interface. Both software tools are used for stepping students through the tutorials depicting the knowledge discovery process. This allows the reader maximum flexibility for their hands-on data mining experience.



Matrix Methods In Data Mining And Pattern Recognition


Matrix Methods In Data Mining And Pattern Recognition
DOWNLOAD
Author : Lars Elden
language : en
Publisher: SIAM
Release Date : 2007-07-12

Matrix Methods In Data Mining And Pattern Recognition written by Lars Elden and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-12 with Computers categories.


Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.



Image Processing


Image Processing
DOWNLOAD
Author : Maria M. P. Petrou
language : en
Publisher: John Wiley & Sons
Release Date : 2010-05-17

Image Processing written by Maria M. P. Petrou and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-17 with Science categories.


Following the success of the first edition, this thoroughly updated second edition of Image Processing: The Fundamentals will ensure that it remains the ideal text for anyone seeking an introduction to the essential concepts of image processing. New material includes image processing and colour, sine and cosine transforms, Independent Component Analysis (ICA), phase congruency and the monogenic signal and several other new topics. These updates are combined with coverage of classic topics in image processing, such as orthogonal transforms and image enhancement, making this a truly comprehensive text on the subject. Key features: Presents material at two levels of difficulty: the main text addresses the fundamental concepts and presents a broad view of image processing, whilst more advanced material is interleaved in boxes throughout the text, providing further reference for those who wish to examine each technique in depth. Contains a large number of fully worked out examples. Focuses on an understanding of how image processing methods work in practice. Illustrates complex algorithms on a step-by-step basis, and lists not only the good practices but also identifies the pitfalls in each case. Uses a clear question and answer structure. Includes a CD containing the MATLAB® code of the various examples and algorithms presented in the book. There is also an accompanying website with slides available for download for instructors as a teaching resource. Image Processing: The Fundamentals, Second Edition is an ideal teaching resource for both undergraduate and postgraduate students. It will also be of value to researchers of various disciplines from medicine to mathematics with a professional interest in image processing



Image Processing


Image Processing
DOWNLOAD
Author : Tinku Acharya
language : en
Publisher: John Wiley & Sons
Release Date : 2005-10-03

Image Processing written by Tinku Acharya and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-03 with Computers categories.


Image processing-from basics to advanced applications Learn how to master image processing and compression with this outstanding state-of-the-art reference. From fundamentals to sophisticated applications, Image Processing: Principles and Applications covers multiple topics and provides a fresh perspective on future directions and innovations in the field, including: * Image transformation techniques, including wavelet transformation and developments * Image enhancement and restoration, including noise modeling and filtering * Segmentation schemes, and classification and recognition of objects * Texture and shape analysis techniques * Fuzzy set theoretical approaches in image processing, neural networks, etc. * Content-based image retrieval and image mining * Biomedical image analysis and interpretation, including biometric algorithms such as face recognition and signature verification * Remotely sensed images and their applications * Principles and applications of dynamic scene analysis and moving object detection and tracking * Fundamentals of image compression, including the JPEG standard and the new JPEG2000 standard Additional features include problems and solutions with each chapter to help you apply the theory and techniques, as well as bibliographies for researching specialized topics. With its extensive use of examples and illustrative figures, this is a superior title for students and practitioners in computer science, wireless and multimedia communications, and engineering.



Deep Learning


Deep Learning
DOWNLOAD
Author : Dengsheng Zhang
language : en
Publisher: ZDS Online Publishing
Release Date :

Deep Learning written by Dengsheng Zhang and has been published by ZDS Online Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


This book aims to help readers have a systematic understanding of deep learning technology through practical systems and develop their own strategies on network design. To achieve this goal, the book adopts a diagnostic and prescriptive approach. The book starts with breaking down a canonical deep learning network into blocks and layers to understand the complexity and behavior of the network, bottlenecks and issues are identified as a result. A series of advanced network engineering methods are presented targeting specific issues in deep learning design. Those methods include recurrent convolutional neural network, residual convolutional neural networks, 1x1 transformation, autoencoder, U-nets, graph convolution network, region-based convolutional neural networks, YOLO object detection network, backpropagation and generative adversarial networks.



Fundamentals Of Relational Database Management Systems


Fundamentals Of Relational Database Management Systems
DOWNLOAD
Author : S. Sumathi
language : en
Publisher: Springer
Release Date : 2007-03-20

Fundamentals Of Relational Database Management Systems written by S. Sumathi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-03-20 with Computers categories.


This book provides comprehensive coverage of fundamentals of database management system. It contains a detailed description on Relational Database Management System Concepts. There are a variety of solved examples and review questions with solutions. This book is for those who require a better understanding of relational data modeling, its purpose, its nature, and the standards used in creating relational data model.



Foundations Of Data Science


Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23

Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.


Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.