[PDF] Generalized Solutions Of First Order Pdes - eBooks Review

Generalized Solutions Of First Order Pdes


Generalized Solutions Of First Order Pdes
DOWNLOAD

Download Generalized Solutions Of First Order Pdes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Solutions Of First Order Pdes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Generalized Solutions Of First Order Pdes


Generalized Solutions Of First Order Pdes
DOWNLOAD
Author : Andrei I. Subbotin
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Generalized Solutions Of First Order Pdes written by Andrei I. Subbotin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


Hamilton-Jacobi equations and other types of partial differential equa tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].



Generalized Solutions Of Functional Differential Equations


Generalized Solutions Of Functional Differential Equations
DOWNLOAD
Author : Joseph Wiener
language : en
Publisher: World Scientific
Release Date : 1993

Generalized Solutions Of Functional Differential Equations written by Joseph Wiener and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.


The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.



Generalized Characteristics Of First Order Pdes


Generalized Characteristics Of First Order Pdes
DOWNLOAD
Author : Arik Melikyan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Generalized Characteristics Of First Order Pdes written by Arik Melikyan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In some domains of mechanics, physics and control theory boundary value problems arise for nonlinear first order PDEs. A well-known classical result states a sufficiency condition for local existence and uniqueness of twice differentiable solution. This result is based on the method of characteristics (MC). Very often, and as a rule in control theory, the continuous nonsmooth (non-differentiable) functions have to be treated as a solutions to the PDE. At the points of smoothness such solutions satisfy the equation in classical sense. But if a function satisfies this condition only, with no requirements at the points of nonsmoothness, the PDE may have nonunique solutions. The uniqueness takes place if an appropriate matching principle for smooth solution branches defined in neighboring domains is applied or, in other words, the notion of generalized solution is considered. In each field an appropriate matching principle are used. In Optimal Control and Differential Games this principle is the optimality of the cost function. In physics and mechanics certain laws must be fulfilled for correct matching. A purely mathematical approach also can be used, when the generalized solution is introduced to obtain the existence and uniqueness of the solution, without being aimed to describe (to model) some particular physical phenomenon. Some formulations of the generalized solution may meet the modelling of a given phenomenon, the others may not.



Introduction To Partial Differential Equations With Applications


Introduction To Partial Differential Equations With Applications
DOWNLOAD
Author : E. C. Zachmanoglou
language : en
Publisher: Courier Corporation
Release Date : 1986-01-01

Introduction To Partial Differential Equations With Applications written by E. C. Zachmanoglou and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-01-01 with Mathematics categories.


This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.



Elliptic Partial Differential Equations Of Second Order


Elliptic Partial Differential Equations Of Second Order
DOWNLOAD
Author : D. Gilbarg
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Elliptic Partial Differential Equations Of Second Order written by D. Gilbarg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.



Handbook Of First Order Partial Differential Equations


Handbook Of First Order Partial Differential Equations
DOWNLOAD
Author : Andrei D. Polyanin
language : en
Publisher: CRC Press
Release Date : 2001-11-15

Handbook Of First Order Partial Differential Equations written by Andrei D. Polyanin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-11-15 with Mathematics categories.


This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.



Finite Difference Methods For Ordinary And Partial Differential Equations


Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01

Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.



First Order Partial Differential Equations Vol 1


First Order Partial Differential Equations Vol 1
DOWNLOAD
Author : Hyun-Ku Rhee
language : en
Publisher: Courier Corporation
Release Date : 2014-05-05

First Order Partial Differential Equations Vol 1 written by Hyun-Ku Rhee and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-05 with Mathematics categories.


This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of most sections. This volume is geared to advanced undergraduates or first-year grad students with a sound understanding of calculus and elementary ordinary differential equations. 1986 edition. 189 black-and-white illustrations. Author and subject indices.



The Characteristic Method And Its Generalizations For First Order Nonlinear Partial Differential Equations


The Characteristic Method And Its Generalizations For First Order Nonlinear Partial Differential Equations
DOWNLOAD
Author : Tran Duc Van
language : en
Publisher: CRC Press
Release Date : 1999-06-25

The Characteristic Method And Its Generalizations For First Order Nonlinear Partial Differential Equations written by Tran Duc Van and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-06-25 with Mathematics categories.


Despite decades of research and progress in the theory of generalized solutions to first-order nonlinear partial differential equations, a gap between the local and the global theories remains: The Cauchy characteristic method yields the local theory of classical solutions. Historically, the global theory has principally depended on the vanishing viscosity method. The authors of this volume help bridge the gap between the local and global theories by using the characteristic method as a basis for setting a theoretical framework for the study of global generalized solutions. That is, they extend the smooth solutions obtained by the characteristic method. The authors offer material previously unpublished in book form, including treatments of the life span of classical solutions, the construction of singularities of generalized solutions, new existence and uniqueness theorems on minimax solutions, differential inequalities of Haar type and their application to the uniqueness of global, semi-classical solutions, and Hopf-type explicit formulas for global solutions. These subjects yield interesting relations between purely mathematical theory and the applications of first-order nonlinear PDEs. The Characteristic Method and Its Generalizations for First-Order Nonlinear Partial Differential Equations represents a comprehensive exposition of the authors' works over the last decade. The book is self-contained and assumes only basic measure theory, topology, and ordinary differential equations as prerequisites. With its innovative approach, new results, and many applications, it will prove valuable to mathematicians, physicists, and engineers and especially interesting to researchers in nonlinear PDEs, differential inequalities, multivalued analysis, differential games, and related topics in applied analysis.



Semi Lagrangian Approximation Schemes For Linear And Hamilton Jacobi Equations


Semi Lagrangian Approximation Schemes For Linear And Hamilton Jacobi Equations
DOWNLOAD
Author : Maurizio Falcone
language : en
Publisher: SIAM
Release Date : 2014-01-31

Semi Lagrangian Approximation Schemes For Linear And Hamilton Jacobi Equations written by Maurizio Falcone and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-31 with Mathematics categories.


This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.