Genetic Algorithms In Java

DOWNLOAD
Download Genetic Algorithms In Java PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Algorithms In Java book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Genetic Algorithms In Java Basics
DOWNLOAD
Author : Lee Jacobson
language : en
Publisher: Apress
Release Date : 2015-11-28
Genetic Algorithms In Java Basics written by Lee Jacobson and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-28 with Computers categories.
Genetic Algorithms in Java Basics is a brief introduction to solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This brief book will guide you step-by-step through various implementations of genetic algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language specific issues and concepts involved with genetic algorithms and you'll have everything you need to start building your own. Genetic algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic algorithms in Java
Applied Evolutionary Algorithms In Java
DOWNLOAD
Author : Robert Ghanea-Hercock
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-04-30
Applied Evolutionary Algorithms In Java written by Robert Ghanea-Hercock and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-30 with Computers categories.
Genetic algorithms provide a powerful range of methods for solving complex engineering search and optimization algorithms. Their power can also lead to difficulty for new researchers and students who wish to apply such evolution-based methods. "Applied Evolutionary Algorithms in Java" offers a practical, hands-on guide to applying such algorithms to engineering and scientific problems. The concepts are illustrated through clear examples, ranging from simple to more complex problems domains; all based on real-world industrial problems. Examples are taken from image processing, fuzzy-logic control systems, mobile robots, and telecommunication network optimization problems. The Java-based toolkit provides an easy-to-use and essential visual interface, with integrated graphing and analysis tools. Topics and features: *inclusion of a complete Java toolkit for exploring evolutionary algorithms *strong use of visualization techniques, to increase understanding *coverage of all major evolutionary algorithms in common usage *broad range of industrially based example applications *includes examples and an appendix based on fuzzy logic This book is intended for students, researchers, and professionals interested in using evolutionary algorithms in their work. No mathematics beyond basic algebra and Cartesian graphs methods are required, as the aim is to encourage applying the Java toolkit to develop the power of these techniques.
Hands On Genetic Algorithms With Python
DOWNLOAD
Author : Eyal Wirsansky
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Hands On Genetic Algorithms With Python written by Eyal Wirsansky and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
Introduction To Genetic Algorithms
DOWNLOAD
Author : S.N. Sivanandam
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-24
Introduction To Genetic Algorithms written by S.N. Sivanandam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-24 with Technology & Engineering categories.
Theoriginofevolutionaryalgorithmswasanattempttomimicsomeoftheprocesses taking place in natural evolution. Although the details of biological evolution are not completely understood (even nowadays), there exist some points supported by strong experimental evidence: • Evolution is a process operating over chromosomes rather than over organisms. The former are organic tools encoding the structure of a living being, i.e., a cr- ture is “built” decoding a set of chromosomes. • Natural selection is the mechanism that relates chromosomes with the ef ciency of the entity they represent, thus allowing that ef cient organism which is we- adapted to the environment to reproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage. There exists a large number of reproductive mechanisms in Nature. Most common ones are mutation (that causes the chromosomes of offspring to be different to those of the parents) and recombination (that combines the chromosomes of the parents to produce the offspring). Based upon the features above, the three mentioned models of evolutionary c- puting were independently (and almost simultaneously) developed.
The Nature Of Code
DOWNLOAD
Author : Daniel Shiffman
language : en
Publisher: No Starch Press
Release Date : 2024-09-03
The Nature Of Code written by Daniel Shiffman and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-03 with Computers categories.
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
An Introduction To Genetic Algorithms
DOWNLOAD
Author : Melanie Mitchell
language : en
Publisher: MIT Press
Release Date : 1998-03-02
An Introduction To Genetic Algorithms written by Melanie Mitchell and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-03-02 with Computers categories.
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Genetic Algorithms In Java
DOWNLOAD
Author : Lee Jacobson
language : en
Publisher: Apress
Release Date : 2015-03-07
Genetic Algorithms In Java written by Lee Jacobson and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-07 with Computers categories.
Genetic Algorithms in Java is an applied approach to learning and solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This book will guide you step-by-step through various implementations of Genetic Algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language and concepts involved with Genetic Algorithms and you'll have everything you need to start building your own. Genetic Algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic in Java algorithms
Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration
DOWNLOAD
Author : Earl Cox
language : en
Publisher: Academic Press
Release Date : 2005-02
Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration written by Earl Cox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02 with Computers categories.
Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.
Learning Genetic Algorithms With Python
DOWNLOAD
Author : Ivan Gridin
language : en
Publisher: BPB Publications
Release Date : 2021-02-13
Learning Genetic Algorithms With Python written by Ivan Gridin and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-13 with Computers categories.
Refuel your AI Models and ML applications with High-Quality Optimization and Search Solutions DESCRIPTION Genetic algorithms are one of the most straightforward and powerful techniques used in machine learning. This book ÔLearning Genetic Algorithms with PythonÕ guides the reader right from the basics of genetic algorithms to its real practical implementation in production environments.Ê Each of the chapters gives the reader an intuitive understanding of each concept. You will learn how to build a genetic algorithm from scratch and implement it in real-life problems. Covered with practical illustrated examples, you will learn to design and choose the best model architecture for the particular tasks. Cutting edge examples like radar and football manager problem statements, you will learn to solve high-dimensional big data challenges with ways of optimizing genetic algorithms. KEY FEATURESÊÊ _ Complete coverage on practical implementation of genetic algorithms. _ Intuitive explanations and visualizations supply theoretical concepts. _ Added examples and use-cases on the performance of genetic algorithms. _ Use of Python libraries and a niche coverage on the performance optimization of genetic algorithms. WHAT YOU WILL LEARNÊ _ Understand the mechanism of genetic algorithms using popular python libraries. _ Learn the principles and architecture of genetic algorithms. _ Apply and Solve planning, scheduling and analytics problems in Enterprise applications. _Ê Expert learning on prime concepts like Selection, Mutation and Crossover. WHO THIS BOOK IS FORÊÊ The book is for Data Science team, Analytics team, AI Engineers, ML Professionals who want to integrate genetic algorithms to refuel their ML and AI applications. No special expertise about machine learning is required although a basic knowledge of Python is expected. TABLE OF CONTENTS 1. Introduction 2. Genetic Algorithm Flow 3. Selection 4. Crossover 5. Mutation 6. Effectiveness 7. Parameter Tuning 8. Black-box Function 9. Combinatorial Optimization: Binary Gene Encoding 10. Combinatorial Optimization: Ordered Gene Encoding 11. Other Common Problems 12. Adaptive Genetic Algorithm 13. Improving Performance
Cellular Genetic Algorithms
DOWNLOAD
Author : Enrique Alba
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-05
Cellular Genetic Algorithms written by Enrique Alba and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-05 with Mathematics categories.
Cellular Genetic Algorithms defines a new class of optimization algorithms based on the concepts of structured populations and Genetic Algorithms (GAs). The authors explain and demonstrate the validity of these cellular genetic algorithms throughout the book with equal and parallel emphasis on both theory and practice. This book is a key source for studying and designing cellular GAs, as well as a self-contained primary reference book for these algorithms.