Genomics Data Analysis

DOWNLOAD
Download Genomics Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genomics Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Genomics Data Analysis
DOWNLOAD
Author : David R. Bickel
language : en
Publisher: CRC Press
Release Date : 2019-09-24
Genomics Data Analysis written by David R. Bickel and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-24 with Mathematics categories.
Statisticians have met the need to test hundreds or thousands of genomics hypotheses simultaneously with novel empirical Bayes methods that combine advantages of traditional Bayesian and frequentist statistics. Techniques for estimating the local false discovery rate assign probabilities of differential gene expression, genetic association, etc. without requiring subjective prior distributions. This book brings these methods to scientists while keeping the mathematics at an elementary level. Readers will learn the fundamental concepts behind local false discovery rates, preparing them to analyze their own genomics data and to critically evaluate published genomics research. Key Features: * dice games and exercises, including one using interactive software, for teaching the concepts in the classroom * examples focusing on gene expression and on genetic association data and briefly covering metabolomics data and proteomics data * gradual introduction to the mathematical equations needed * how to choose between different methods of multiple hypothesis testing * how to convert the output of genomics hypothesis testing software to estimates of local false discovery rates * guidance through the minefield of current criticisms of p values * material on non-Bayesian prior p values and posterior p values not previously published
Genomics Data Analysis For Crop Improvement
DOWNLOAD
Author : Priyanka Anjoy
language : en
Publisher: Springer Nature
Release Date : 2024-01-09
Genomics Data Analysis For Crop Improvement written by Priyanka Anjoy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-09 with Technology & Engineering categories.
This book addresses complex problems associated with crop improvement programs, using a wide range of programming solutions, for genomics data handling and sustainable agriculture. It describes important concepts in genomics data analysis and sequence-based mapping approaches along with references. The book contains 16 chapters on recent developments in several methods of genomic data analysis for crop improvements and sustainable agriculture, all authored by eminent researchers who are experts in their fields. These chapters focus on applications of a wide range of key bioinformatics topics, including assembly, annotation, and visualization of next-generation sequencing (NGS) data; expression profiles of coding and noncoding RNA; statistical and quantitative genetics; trait-based association analysis, quantitative trait loci (QTL) mapping, and artificial intelligence in genomic studies. Real examples and case studies in the book will come in handy when applying the techniques. The relative scarcity of reference materials covering bioinformatics applications as compared with the readily available books also enhances the utility of this book. The targeted readers of the book are scientists, researchers, and bioinformaticians from genomics and advanced breeding in different areas. The book will appeal to the applied researchers engaged in crop improvements and sustainable agriculture by using bioinformatics tools, students, research project leaders, and practitioners from the various marginal disciplines and interdisciplinary research.
600 Expert Interview Questions For Genomics Data Analysts Analyze Complex Biological Datasets For Insights
DOWNLOAD
Author : CloudRoar Consulting Services
language : en
Publisher: CloudRoar Consulting Services
Release Date : 2025-08-15
600 Expert Interview Questions For Genomics Data Analysts Analyze Complex Biological Datasets For Insights written by CloudRoar Consulting Services and has been published by CloudRoar Consulting Services this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-15 with Computers categories.
Genomic Data Analysis
DOWNLOAD
Author : Mr. Rohit Manglik
language : en
Publisher: EduGorilla Publication
Release Date : 2024-04-06
Genomic Data Analysis written by Mr. Rohit Manglik and has been published by EduGorilla Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-06 with Science categories.
EduGorilla Publication is a trusted name in the education sector, committed to empowering learners with high-quality study materials and resources. Specializing in competitive exams and academic support, EduGorilla provides comprehensive and well-structured content tailored to meet the needs of students across various streams and levels.
Big Data Analytics In Genomics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher: Springer
Release Date : 2016-10-24
Big Data Analytics In Genomics written by Ka-Chun Wong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-24 with Computers categories.
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Deep Learning For Genomics
DOWNLOAD
Author : Upendra Kumar Devisetty
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-11-11
Deep Learning For Genomics written by Upendra Kumar Devisetty and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-11 with Computers categories.
Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key FeaturesApply deep learning algorithms to solve real-world problems in the field of genomicsExtract biological insights from deep learning models built from genomic datasetsTrain, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomicsBook Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learnDiscover the machine learning applications for genomicsExplore deep learning concepts and methodologies for genomics applicationsUnderstand supervised deep learning algorithms for genomics applicationsGet to grips with unsupervised deep learning with autoencodersImprove deep learning models using generative modelsOperationalize deep learning models from genomics datasetsVisualize and interpret deep learning modelsUnderstand deep learning challenges, pitfalls, and best practicesWho this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts.
Primer To Analysis Of Genomic Data Using R
DOWNLOAD
Author : Cedric Gondro
language : en
Publisher: Springer
Release Date : 2015-05-18
Primer To Analysis Of Genomic Data Using R written by Cedric Gondro and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-18 with Medical categories.
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.
Computational Intelligence For Genomics Data
DOWNLOAD
Author : Babita Pandey
language : en
Publisher: Elsevier
Release Date : 2025-01-21
Computational Intelligence For Genomics Data written by Babita Pandey and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Computers categories.
Computational Intelligence for Genomics Data presents an overview of machine learning and deep learning techniques being developed for the analysis of genomic data and the development of disease prediction models. The book focuses on machine and deep learning techniques applied to dimensionality reduction, feature extraction, and expressive gene selection. It includes designs, algorithms, and simulations on MATLAB and Python for larger prediction models and explores the possibilities of software and hardware-based applications and devices for genomic disease prediction. With the inclusion of important case studies and examples, this book will be a helpful resource for researchers, graduate students, and professional engineers. - Provides comparative analysis of machine learning and deep learning methods in the analysis of genomic data, discussing major design challenges, best practices, pitfalls, and research potential - Explores machine and deep learning techniques applied to dimensionality reduction, feature extraction, data selection, and their application in genomics - Presents case studies of various diseases based on gene microarray expression data, including cancer, liver disorders, neuromuscular disorders, and neurodegenerative disorders
Statistical Analysis Of Molecular And Genomic Evolution
DOWNLOAD
Author : Xun Gu
language : en
Publisher: Oxford University Press
Release Date : 2024-10-08
Statistical Analysis Of Molecular And Genomic Evolution written by Xun Gu and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-08 with Science categories.
The field of molecular and genomic evolution has been catalysed by the ever increasing availability of high throughput data such as transcriptome evolution, genotype-phenotype evolution, and genetic robustness. However, there is also an urgent requirement for the emergence of new paradigms (universally accepted scientific frameworks) supported by conceptual breakthroughs, since there is now widespread agreement that genome evolution research should be far more than a static pattern characterized by some well-known arguments and yet more big data for testing or extension. Furthermore, while the internet has made a vast body of literature and data widely accessible, researchers are increasingly facing significant challenges in how to select from this huge reserve appropriately and systematically. Statistical Analysis of Molecular and Genomic Evolution sets out to provide a solution to the most frequently asked question by next-generation young researchers in the area of evolutionary genomics: What is the knowledge that is essential for moving the research forward and where can it be found? Although the book incorporates the latest research foci, it is written at the simplest mathematical level whilst sophisticated enough to provide a deep understanding of current principles and methods. Technical issues are described only briefly, mathematical derivations are kept to a minimum, and it is structured and presented in a way that encourages its use as a graduate textbook. Mindful of the steep learning curve that some biologist readers may face, online appendices review basic mathematical and statistical concepts used in the book, and provide further examples and practical exercises. This is an advanced textbook suitable for graduate level students as well as professional researchers (both empiricists and theoreticians) in the fields of molecular phylogenetics, evolutionary biology, bioinformatics, mathematics, and statistics.
Stroke Genomics
DOWNLOAD
Author : Simon J. Read
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-01
Stroke Genomics written by Simon J. Read and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-01 with Medical categories.
With sequencing of the human genome now complete, deciphering the role of gene function in human neurological pathophysiology is a promise that has yet to be realized. More than most diseases, stroke has been keenly studied from a genomic perspective. Studies are numerous and incorporate data on stroke inheritance, chromosomal loci of risk, preclinical models of stroke, and differential gene expression of brain injury, repair, and recovery. The problem is no longer a lack of information but one of interpretation and prioritization of what we do know. The aims of Stroke Genomics: Methods and Reviews are twofold. First, it aims to provide the reader with cutting-edge reviews of clinical and preclinical genomics, written by leading experts in the field. In particular, the authors of certain chapters relate gene expression changes to physiological end points, such as functional imaging paradigms. Thus, a more holistic approach to gene expression is described, one in which molecular biology goes hand in hand with stroke pathophysiology. Second, detailed methods for study of the molecular biology of stroke are TM also included. Following the format of the Methods in Molecular Medicine series, these chapters will enable the reader to employ each technique without recourse to other methods texts. In its entirety, this book should provide the reader with the knowledge needed to design, execute, and interpret preclinical and clinical studies of stroke genomics.