[PDF] Big Data Analytics In Genomics - eBooks Review

Big Data Analytics In Genomics


Big Data Analytics In Genomics
DOWNLOAD

Download Big Data Analytics In Genomics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Analytics In Genomics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Big Data Analytics In Genomics


Big Data Analytics In Genomics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher: Springer
Release Date : 2016-10-24

Big Data Analytics In Genomics written by Ka-Chun Wong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-24 with Computers categories.


This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.



Big Data Analytics In Bioinformatics And Healthcare


Big Data Analytics In Bioinformatics And Healthcare
DOWNLOAD
Author : Baoying Wang
language : en
Publisher:
Release Date : 2014-10

Big Data Analytics In Bioinformatics And Healthcare written by Baoying Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10 with Data mining categories.


"This book merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management"--



Big Data In Omics And Imaging


Big Data In Omics And Imaging
DOWNLOAD
Author : Momiao Xiong
language : en
Publisher: CRC Press
Release Date : 2018-06-14

Big Data In Omics And Imaging written by Momiao Xiong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-14 with Mathematics categories.


Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.



Precision Public Health


Precision Public Health
DOWNLOAD
Author : Tarun Weeramanthri
language : en
Publisher: Frontiers Media SA
Release Date : 2018-06-25

Precision Public Health written by Tarun Weeramanthri and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-25 with categories.


Precision Public Health is a new and rapidly evolving field, that examines the application of new technologies to public health policy and practice. It draws on a broad range of disciplines including genomics, spatial data, data linkage, epidemiology, health informatics, big data, predictive analytics and communications. The hope is that these new technologies will strengthen preventive health, improve access to health care, and reach disadvantaged populations in all areas of the world. But what are the downsides and what are the risks, and how can we ensure the benefits flow to those population groups most in need, rather than simply to those individuals who can afford to pay? This is the first collection of theoretical frameworks, analyses of empirical data, and case studies to be assembled on this topic, published to stimulate debate and promote collaborative work.



Big Data Analytics In Computational Genome Sequence Analysis


Big Data Analytics In Computational Genome Sequence Analysis
DOWNLOAD
Author : Dr. F. Amul Mary & Dr. S. Jyothi
language : en
Publisher: Ashok Yakkaldevi
Release Date : 2022-01-18

Big Data Analytics In Computational Genome Sequence Analysis written by Dr. F. Amul Mary & Dr. S. Jyothi and has been published by Ashok Yakkaldevi this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-18 with Art categories.


The genomes in human body programs the blueprint of one’s life but the functions of those genomes nearly three billion genome bases are not known. The genome sequence in human being gives the fundamental rules for human biology. Science makes every effort to reveal the laws of nature and critical understanding of the biology. Scientists in the life-science field are seeking genetic variants associated with multifaceted set of observable characteristics to advance our understanding about genetics. Technological advancements are assisting the scientists to quickly create, store and analyze the data as fast as possible and as efficient as possible. The NCBI and other organizations maintain genome sequences, proteins, RNA, DNA and other information of all species as well as their behavioral data. There is a lot and lot of data. Translating these data into useful insights which can be used for research and innovation is a main concern.



Computational Genomics With R


Computational Genomics With R
DOWNLOAD
Author : Altuna Akalin
language : en
Publisher: CRC Press
Release Date : 2020-12-16

Computational Genomics With R written by Altuna Akalin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-16 with Mathematics categories.


Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.



Data Analytics In Bioinformatics


Data Analytics In Bioinformatics
DOWNLOAD
Author : Rabinarayan Satpathy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-01-20

Data Analytics In Bioinformatics written by Rabinarayan Satpathy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-20 with Computers categories.


Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.



Knowledge Modelling And Big Data Analytics In Healthcare


Knowledge Modelling And Big Data Analytics In Healthcare
DOWNLOAD
Author : Mayuri Mehta
language : en
Publisher: CRC Press
Release Date : 2021-12-09

Knowledge Modelling And Big Data Analytics In Healthcare written by Mayuri Mehta and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-09 with Computers categories.


Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.



Scalable Big Data Analytics For Protein Bioinformatics


Scalable Big Data Analytics For Protein Bioinformatics
DOWNLOAD
Author : Dariusz Mrozek
language : en
Publisher: Springer
Release Date : 2018-12-26

Scalable Big Data Analytics For Protein Bioinformatics written by Dariusz Mrozek and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-26 with Computers categories.


This book presents a focus on proteins and their structures. The text describes various scalable solutions for protein structure similarity searching, carried out at main representation levels and for prediction of 3D structures of proteins. Emphasis is placed on techniques that can be used to accelerate similarity searches and protein structure modeling processes. The content of the book is divided into four parts. The first part provides background information on proteins and their representation levels, including a formal model of a 3D protein structure used in computational processes, and a brief overview of the technologies used in the solutions presented in the book. The second part of the book discusses Cloud services that are utilized in the development of scalable and reliable cloud applications for 3D protein structure similarity searching and protein structure prediction. The third part of the book shows the utilization of scalable Big Data computational frameworks, like Hadoop and Spark, in massive 3D protein structure alignments and identification of intrinsically disordered regions in protein structures. The fourth part of the book focuses on finding 3D protein structure similarities, accelerated with the use of GPUs and the use of multithreading and relational databases for efficient approximate searching on protein secondary structures. The book introduces advanced techniques and computational architectures that benefit from recent achievements in the field of computing and parallelism. Recent developments in computer science have allowed algorithms previously considered too time-consuming to now be efficiently used for applications in bioinformatics and the life sciences. Given its depth of coverage, the book will be of interest to researchers and software developers working in the fields of structural bioinformatics and biomedical databases.



Introduction To Computational Metagenomics


Introduction To Computational Metagenomics
DOWNLOAD
Author : Zhong Wang
language : en
Publisher: World Scientific
Release Date : 2022-04-11

Introduction To Computational Metagenomics written by Zhong Wang and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-11 with Science categories.


Breakthroughs in high-throughput genome sequencing and high-performance computing technologies have empowered scientists to decode many genomes including our own. Now they have a bigger ambition: to fully understand the vast diversity of microbial communities within us and around us, and to exploit their potential for the improvement of our health and environment. In this new field called metagenomics, microbial genomes are sequenced directly from the habitats without lab cultivation. Computational metagenomics, however, faces both a data challenge that deals with tens of tera-bases of sequences and an algorithmic one that deals with the complexity of thousands of species and their interactions.This interdisciplinary book is essential reading for those who are interested in beginning their own journey in computational metagenomics. It is a prism to look through various intricate computational metagenomics problems and unravel their three distinctive aspects: metagenomics, data engineering, and algorithms. Graduate students and advanced undergraduates from genomics science or computer science fields will find that the concepts explained in this book can serve as stepping stones for more advanced topics, while metagenomics practitioners and researchers from similar disciplines may use it to broaden their knowledge or identify new research targets.