Scalable Big Data Analytics For Protein Bioinformatics

DOWNLOAD
Download Scalable Big Data Analytics For Protein Bioinformatics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scalable Big Data Analytics For Protein Bioinformatics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Scalable Big Data Analytics For Protein Bioinformatics
DOWNLOAD
Author : Dariusz Mrozek
language : en
Publisher: Springer
Release Date : 2018-09-25
Scalable Big Data Analytics For Protein Bioinformatics written by Dariusz Mrozek and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-25 with Computers categories.
This book presents a focus on proteins and their structures. The text describes various scalable solutions for protein structure similarity searching, carried out at main representation levels and for prediction of 3D structures of proteins. Emphasis is placed on techniques that can be used to accelerate similarity searches and protein structure modeling processes. The content of the book is divided into four parts. The first part provides background information on proteins and their representation levels, including a formal model of a 3D protein structure used in computational processes, and a brief overview of the technologies used in the solutions presented in the book. The second part of the book discusses Cloud services that are utilized in the development of scalable and reliable cloud applications for 3D protein structure similarity searching and protein structure prediction. The third part of the book shows the utilization of scalable Big Data computational frameworks, like Hadoop and Spark, in massive 3D protein structure alignments and identification of intrinsically disordered regions in protein structures. The fourth part of the book focuses on finding 3D protein structure similarities, accelerated with the use of GPUs and the use of multithreading and relational databases for efficient approximate searching on protein secondary structures. The book introduces advanced techniques and computational architectures that benefit from recent achievements in the field of computing and parallelism. Recent developments in computer science have allowed algorithms previously considered too time-consuming to now be efficiently used for applications in bioinformatics and the life sciences. Given its depth of coverage, the book will be of interest to researchers and software developers working in the fields of structural bioinformatics and biomedical databases.
Big Data Analytics In Chemoinformatics And Bioinformatics
DOWNLOAD
Author : Subhash C. Basak
language : en
Publisher: Elsevier
Release Date : 2022-12-06
Big Data Analytics In Chemoinformatics And Bioinformatics written by Subhash C. Basak and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-06 with Science categories.
Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry
Big Data Analytics In Genomics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher: Springer
Release Date : 2016-10-24
Big Data Analytics In Genomics written by Ka-Chun Wong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-24 with Computers categories.
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Beyond Databases Architectures And Structures Paving The Road To Smart Data Processing And Analysis
DOWNLOAD
Author : Stanisław Kozielski
language : en
Publisher: Springer
Release Date : 2019-05-07
Beyond Databases Architectures And Structures Paving The Road To Smart Data Processing And Analysis written by Stanisław Kozielski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-07 with Computers categories.
This book constitutes the refereed proceedings of the 15th International Conference entitled Beyond Databases, Architectures and Structures, BDAS 2019, held in Ustroń, Poland, in May 2019. It consists of 26 carefully reviewed papers selected from 69 submissions. The papers are organized in topical sections, namely big data and cloud computing; architectures, structures and algorithms for efficient data processing and analysis; artificial intelligence, data mining and knowledge discovery; image analysis and multimedia mining; bioinformatics and biomedical data analysis; industrial applications; networks and security.
Computational Science Iccs 2020
DOWNLOAD
Author : Valeria V. Krzhizhanovskaya
language : en
Publisher: Springer Nature
Release Date : 2020-06-18
Computational Science Iccs 2020 written by Valeria V. Krzhizhanovskaya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-18 with Computers categories.
The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Computational Methods in Artificial Intelligence and Machine Learning; Track of Biomedical and Bioinformatics Challenges for Computer Science Part IV: Track of Classifier Learning from Difficult Data; Track of Complex Social Systems through the Lens of Computational Science; Track of Computational Health; Track of Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems; Track of Computer Graphics, Image Processing and Artificial Intelligence Part VI: Track of Data Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Meshfree Methods in Computational Sciences; Track of Multiscale Modelling and Simulation; Track of Quantum Computing Workshop Part VII: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Track of Software Engineering for Computational Science; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Track of UNcErtainty QUantIficatiOn for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.
Cooperative Design Visualization And Engineering
DOWNLOAD
Author : Yuhua Luo
language : en
Publisher: Springer Nature
Release Date : 2021-09-30
Cooperative Design Visualization And Engineering written by Yuhua Luo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.
This book constitutes the proceedings of the 18th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2021, held in October 2021. Due to COVId-19 pandemic the conference was held virtually. The 25 full papers and 9 short papers presented were carefully reviewed and selected from 69 submissions. The achievement, progress and future challenges are reported in areas such as health care, industrial design, banking IT systems, cultural activities support, operational maritime cybersecurity assurance, emotion communication, and social network data analytics.
Big Data Analytics
DOWNLOAD
Author : Ümit Demirbaga
language : en
Publisher: Springer Nature
Release Date : 2024-05-07
Big Data Analytics written by Ümit Demirbaga and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-07 with Computers categories.
This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks. The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world.
Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14
Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Big Data Analytics In Bioinformatics And Healthcare
DOWNLOAD
Author : Baoying Wang
language : en
Publisher:
Release Date : 2014-10
Big Data Analytics In Bioinformatics And Healthcare written by Baoying Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10 with Data mining categories.
"This book merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management"--
Machine Learning Techniques On Gene Function Prediction
DOWNLOAD
Author : Quan Zou
language : en
Publisher: Frontiers Media SA
Release Date : 2019-12-04
Machine Learning Techniques On Gene Function Prediction written by Quan Zou and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-04 with categories.