[PDF] Geometric Models For Noncommutative Algebras - eBooks Review

Geometric Models For Noncommutative Algebras


Geometric Models For Noncommutative Algebras
DOWNLOAD

Download Geometric Models For Noncommutative Algebras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Models For Noncommutative Algebras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Geometric Models For Noncommutative Algebras


Geometric Models For Noncommutative Algebras
DOWNLOAD
Author : Ana Cannas da Silva
language : en
Publisher: American Mathematical Soc.
Release Date : 1999

Geometric Models For Noncommutative Algebras written by Ana Cannas da Silva and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Mathematics categories.


The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.



Noncommutative Geometry And Particle Physics


Noncommutative Geometry And Particle Physics
DOWNLOAD
Author : Walter D. van Suijlekom
language : en
Publisher: Springer
Release Date : 2014-07-21

Noncommutative Geometry And Particle Physics written by Walter D. van Suijlekom and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Science categories.


This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.



Topics In Noncommutative Geometry


Topics In Noncommutative Geometry
DOWNLOAD
Author : Guillermo Cortiñas
language : en
Publisher: American Mathematical Soc.
Release Date : 2012

Topics In Noncommutative Geometry written by Guillermo Cortiñas and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


Luis Santalo Winter Schools are organized yearly by the Mathematics Department and the Santalo Mathematical Research Institute of the School of Exact and Natural Sciences of the University of Buenos Aires (FCEN). This volume contains the proceedings of the third Luis Santalo Winter School which was devoted to noncommutative geometry and held at FCEN July 26-August 6, 2010. Topics in this volume concern noncommutative geometry in a broad sense, encompassing various mathematical and physical theories that incorporate geometric ideas to the study of noncommutative phenomena. It explores connections with several areas including algebra, analysis, geometry, topology and mathematical physics. Bursztyn and Waldmann discuss the classification of star products of Poisson structures up to Morita equivalence. Tsygan explains the connections between Kontsevich's formality theorem, noncommutative calculus, operads and index theory. Hoefel presents a concrete elementary construction in operad theory. Meyer introduces the subject of $\mathrm{C}^*$-algebraic crossed products. Rosenberg introduces Kasparov's $KK$-theory and noncommutative tori and includes a discussion of the Baum-Connes conjecture for $K$-theory of crossed products, among other topics. Lafont, Ortiz, and Sanchez-Garcia carry out a concrete computation in connection with the Baum-Connes conjecture. Zuk presents some remarkable groups produced by finite automata. Mesland discusses spectral triples and the Kasparov product in $KK$-theory. Trinchero explores the connections between Connes' noncommutative geometry and quantum field theory. Karoubi demonstrates a construction of twisted $K$-theory by means of twisted bundles. Tabuada surveys the theory of noncommutative motives.



Noncommutative Geometry And Representation Theory In Mathematical Physics


Noncommutative Geometry And Representation Theory In Mathematical Physics
DOWNLOAD
Author : Jürgen Fuchs
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Noncommutative Geometry And Representation Theory In Mathematical Physics written by Jürgen Fuchs and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.



Recent Advances In Noncommutative Algebra And Geometry


Recent Advances In Noncommutative Algebra And Geometry
DOWNLOAD
Author : K. A. Brown
language : en
Publisher: American Mathematical Society
Release Date : 2024-05-30

Recent Advances In Noncommutative Algebra And Geometry written by K. A. Brown and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-30 with Mathematics categories.


This volume contains the proceedings of the conference Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry, held from June 20–24, 2022, at the University of Washington, Seattle, in honor of S. Paul Smith's 65th birthday. The articles reflect the wide interests of Smith and provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Hopf algebras and quantum groups, the elliptic algebras of Feigin and Odesskii, Calabi-Yau algebras, Artin-Schelter regular algebras, deformation theory, and Lie theory. In addition to original research contributions the volume includes an introductory essay reviewing Smith's research contributions in these fields, and several survey articles.



Elements Of Noncommutative Geometry


Elements Of Noncommutative Geometry
DOWNLOAD
Author : Jose M. Gracia-Bondia
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27

Elements Of Noncommutative Geometry written by Jose M. Gracia-Bondia and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Mathematics categories.




Basic Noncommutative Geometry


Basic Noncommutative Geometry
DOWNLOAD
Author : Masoud Khalkhali
language : en
Publisher: European Mathematical Society
Release Date : 2009

Basic Noncommutative Geometry written by Masoud Khalkhali and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.



Quantum Field Theory And Noncommutative Geometry


Quantum Field Theory And Noncommutative Geometry
DOWNLOAD
Author : Ursula Carow-Watamura
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-02-21

Quantum Field Theory And Noncommutative Geometry written by Ursula Carow-Watamura and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02-21 with Mathematics categories.


This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.



Noncommutative Geometry Quantum Fields And Motives


Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD
Author : Alain Connes
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-03-13

Noncommutative Geometry Quantum Fields And Motives written by Alain Connes and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-13 with Mathematics categories.


The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.



Noncommutative Localization In Algebra And Topology


Noncommutative Localization In Algebra And Topology
DOWNLOAD
Author : Andrew Ranicki
language : en
Publisher: Cambridge University Press
Release Date : 2006-02-09

Noncommutative Localization In Algebra And Topology written by Andrew Ranicki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-09 with Mathematics categories.


Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.