Geometric Theory Of Dynamical Systems

DOWNLOAD
Download Geometric Theory Of Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Theory Of Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometric Theory Of Dynamical Systems
DOWNLOAD
Author : J. Jr. Palis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Theory Of Dynamical Systems written by J. Jr. Palis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
Geometric Theory Of Dynamical Systems
DOWNLOAD
Author : J. Jr. Palis
language : en
Publisher: Springer
Release Date : 1982-08-18
Geometric Theory Of Dynamical Systems written by J. Jr. Palis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982-08-18 with Mathematics categories.
Geometric Theory Of Dynamical Systems
DOWNLOAD
Author : Jacob Palis
language : en
Publisher:
Release Date : 1998
Geometric Theory Of Dynamical Systems written by Jacob Palis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with categories.
Dynamical Systems And Geometric Mechanics
DOWNLOAD
Author : Jared Maruskin
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-08-21
Dynamical Systems And Geometric Mechanics written by Jared Maruskin and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-21 with Science categories.
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Dynamical Systems In Neuroscience
DOWNLOAD
Author : Eugene M. Izhikevich
language : en
Publisher: MIT Press
Release Date : 2007
Dynamical Systems In Neuroscience written by Eugene M. Izhikevich and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Differentiable dynamical systems categories.
In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Differential Geometry And Topology
DOWNLOAD
Author : Keith Burns
language : en
Publisher: CRC Press
Release Date : 2005-05-27
Differential Geometry And Topology written by Keith Burns and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-05-27 with Mathematics categories.
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.
Control Theory From The Geometric Viewpoint
DOWNLOAD
Author : Andrei A. Agrachev
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-04-15
Control Theory From The Geometric Viewpoint written by Andrei A. Agrachev and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-15 with Language Arts & Disciplines categories.
This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.
Geometric Control Theory
DOWNLOAD
Author : Velimir Jurdjevic
language : en
Publisher: Cambridge University Press
Release Date : 1997
Geometric Control Theory written by Velimir Jurdjevic and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
Topics In The Geometric Theory Of Linear Systems
DOWNLOAD
Author : Robert Hermann
language : en
Publisher:
Release Date : 1984
Topics In The Geometric Theory Of Linear Systems written by Robert Hermann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.
Geometric Theory Of Discrete Nonautonomous Dynamical Systems
DOWNLOAD
Author : Christian Pötzsche
language : en
Publisher: Springer
Release Date : 2010-08-24
Geometric Theory Of Discrete Nonautonomous Dynamical Systems written by Christian Pötzsche and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-24 with Mathematics categories.
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.