Geometry Of Manifolds With Non Negative Sectional Curvature

DOWNLOAD
Download Geometry Of Manifolds With Non Negative Sectional Curvature PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry Of Manifolds With Non Negative Sectional Curvature book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometry Of Manifolds With Non Negative Sectional Curvature
DOWNLOAD
Author : Owen Dearricott
language : en
Publisher: Springer
Release Date : 2014-07-22
Geometry Of Manifolds With Non Negative Sectional Curvature written by Owen Dearricott and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-22 with Mathematics categories.
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
Comparison Geometry
DOWNLOAD
Author : Karsten Grove
language : en
Publisher: Cambridge University Press
Release Date : 1997-05-13
Comparison Geometry written by Karsten Grove and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-05-13 with Mathematics categories.
This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.
Geometry Of Manifolds
DOWNLOAD
Author : K. Shiohama
language : en
Publisher: Elsevier
Release Date : 1989-10-04
Geometry Of Manifolds written by K. Shiohama and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-10-04 with Mathematics categories.
This volume contains the papers presented at a symposium on differential geometry at Shinshu University in July of 1988. Carefully reviewed by a panel of experts, the papers pertain to the following areas of research: dynamical systems, geometry of submanifolds and tensor geometry, lie sphere geometry, Riemannian geometry, Yang-Mills Connections, and geometry of the Laplace operator.
Comparison Theorems In Riemannian Geometry
DOWNLOAD
Author : Jeff Cheeger
language : en
Publisher: Newnes
Release Date : 1975
Comparison Theorems In Riemannian Geometry written by Jeff Cheeger and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 1975 with Mathematics categories.
The Geometry Of Total Curvature On Complete Open Surfaces
DOWNLOAD
Author : Katsuhiro Shiohama
language : en
Publisher: Cambridge University Press
Release Date : 2003-11-13
The Geometry Of Total Curvature On Complete Open Surfaces written by Katsuhiro Shiohama and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-11-13 with Mathematics categories.
This is a self-contained account of how some modern ideas in differential geometry can be used to tackle and extend classical results in integral geometry. The authors investigate the influence of total curvature on the metric structure of complete, non-compact Riemannian 2-manifolds, though their work, much of which has never appeared in book form before, can be extended to more general spaces. Many classical results are introduced and then extended by the authors. The compactification of complete open surfaces is discussed, as are Busemann functions for rays. Open problems are provided in each chapter, and the text is richly illustrated with figures designed to help the reader understand the subject matter and get intuitive ideas about the subject. The treatment is self-contained, assuming only a basic knowledge of manifold theory, so is suitable for graduate students and non-specialists who seek an introduction to this modern area of differential geometry.
Nonpositive Curvature Geometric And Analytic Aspects
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-05-01
Nonpositive Curvature Geometric And Analytic Aspects written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-05-01 with Mathematics categories.
The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.
Riemannian Geometry And Geometric Analysis
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Riemannian Geometry And Geometric Analysis written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less system atic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geom etry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive intro duction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and an alytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr-University Bochum and the University of Leipzig. The first main new feature of the third edition is a new chapter on Morse theory and Floer homology that attempts to explain the relevant ideas and concepts in an elementary manner and with detailed examples.
Riemannian Manifolds
DOWNLOAD
Author : John M. Lee
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06
Riemannian Manifolds written by John M. Lee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Mathematics categories.
This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose–Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints.
Riemannian Geometry
DOWNLOAD
Author : Peter Petersen
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-11-24
Riemannian Geometry written by Peter Petersen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-24 with Mathematics categories.
This volume introduces techniques and theorems of Riemannian geometry, and opens the way to advanced topics. The text combines the geometric parts of Riemannian geometry with analytic aspects of the theory, and reviews recent research. The updated second edition includes a new coordinate-free formula that is easily remembered (the Koszul formula in disguise); an expanded number of coordinate calculations of connection and curvature; general fomulas for curvature on Lie Groups and submersions; variational calculus integrated into the text, allowing for an early treatment of the Sphere theorem using a forgotten proof by Berger; recent results regarding manifolds with positive curvature.
Differential Geometry In The Large
DOWNLOAD
Author : Owen Dearricott
language : en
Publisher: Cambridge University Press
Release Date : 2020-10-22
Differential Geometry In The Large written by Owen Dearricott and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.