[PDF] Graphical Belief Modeling - eBooks Review

Graphical Belief Modeling


Graphical Belief Modeling
DOWNLOAD

Download Graphical Belief Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphical Belief Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Graphical Belief Modeling


Graphical Belief Modeling
DOWNLOAD
Author : Russel .G Almond
language : en
Publisher: Routledge
Release Date : 2022-01-26

Graphical Belief Modeling written by Russel .G Almond and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-26 with Mathematics categories.


This innovative volume explores graphical models using belief functions as a representation of uncertainty, offering an alternative approach to problems where probability proves inadequate. Graphical Belief Modeling makes it easy to compare the two approaches while evaluating their relative strengths and limitations. The author examines both theory and computation, incorporating practical notes from the author's own experience with the BELIEF software package. As one of the first volumes to apply the Dempster-Shafer belief functions to a practical model, a substantial portion of the book is devoted to a single example--calculating the reliability of a complex system. This special feature enables readers to gain a thorough understanding of the application of this methodology. The first section provides a description of graphical belief models and probablistic graphical models that form an important subset: the second section discusses the algorithm used in the manipulation of graphical models: the final segment of the book offers a complete description of the risk assessment example, as well as the methodology used to describe it. Graphical Belief Modeling offers researchers and graduate students in artificial intelligence and statistics more than just a new approach to an old reliability task: it provides them with an invaluable illustration of the process of graphical belief modeling.



Graphical Belief Modeling


Graphical Belief Modeling
DOWNLOAD
Author : Russell G. Almond
language : en
Publisher:
Release Date : 1995

Graphical Belief Modeling written by Russell G. Almond and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Artificial intelligence categories.




Probabilistic Graphical Models


Probabilistic Graphical Models
DOWNLOAD
Author : Daphne Koller
language : en
Publisher: MIT Press
Release Date : 2009-07-31

Probabilistic Graphical Models written by Daphne Koller and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-31 with Computers categories.


A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.



Handbook Of Graphical Models


Handbook Of Graphical Models
DOWNLOAD
Author : Marloes Maathuis
language : en
Publisher: CRC Press
Release Date : 2018-11-12

Handbook Of Graphical Models written by Marloes Maathuis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-12 with Mathematics categories.


A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.



Graphical Models For Security


Graphical Models For Security
DOWNLOAD
Author : Barbara Kordy
language : en
Publisher: Springer
Release Date : 2016-09-07

Graphical Models For Security written by Barbara Kordy and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-07 with Computers categories.


This book constitutes the refereed proceedings from the Third International Workshop on Graphical Models for Security, GraMSec 2016, held in Lisbon, Portugal, in June 2016. The 9 papers presented in this volume were carefully reviewed and selected from 23 submissions. The volume also contains the invited talk by Xinming Ou. GraMSec contributes to the development of well-founded graphical security models, efficient algorithms for their analysis, as well as methodologies for their practical usage.



Probabilistic Graphical Models


Probabilistic Graphical Models
DOWNLOAD
Author : Linda C. van der Gaag
language : en
Publisher: Springer
Release Date : 2014-09-11

Probabilistic Graphical Models written by Linda C. van der Gaag and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-11 with Computers categories.


This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.



Computer Vision Imaging And Computer Graphics Theory And Applications


Computer Vision Imaging And Computer Graphics Theory And Applications
DOWNLOAD
Author : Paul Richard
language : en
Publisher: Springer
Release Date : 2012-02-25

Computer Vision Imaging And Computer Graphics Theory And Applications written by Paul Richard and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-25 with Computers categories.


This book constitutes the refereed proceedings of the International Conference, VISIGRAPP 2010, the Joint Conference on Computer Vision Theory and Applications (VISAPP), on Imaging Theory and Applications (IMAGAPP), and on Computer Graphics Theory and Applications (GRAPP), held in Angers, France, in May 2010. The 19 revised full papers presented together with two invited papers were carefully reviewed and selected. The papers are organized in topical sections on computer vision theory and applications; imaging theory and applications; computer graphics theory and applications; and information visualization theory and applications.



Probabilistic Graphical Models


Probabilistic Graphical Models
DOWNLOAD
Author : Luis Enrique Sucar
language : en
Publisher: Springer Nature
Release Date : 2020-12-23

Probabilistic Graphical Models written by Luis Enrique Sucar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-23 with Computers categories.


This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.



A Guided Tour Of Artificial Intelligence Research


A Guided Tour Of Artificial Intelligence Research
DOWNLOAD
Author : Pierre Marquis
language : en
Publisher: Springer Nature
Release Date : 2020-05-08

A Guided Tour Of Artificial Intelligence Research written by Pierre Marquis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-08 with Computers categories.


The purpose of this book is to provide an overview of AI research, ranging from basic work to interfaces and applications, with as much emphasis on results as on current issues. It is aimed at an audience of master students and Ph.D. students, and can be of interest as well for researchers and engineers who want to know more about AI. The book is split into three volumes: - the first volume brings together twenty-three chapters dealing with the foundations of knowledge representation and the formalization of reasoning and learning (Volume 1. Knowledge representation, reasoning and learning) - the second volume offers a view of AI, in fourteen chapters, from the side of the algorithms (Volume 2. AI Algorithms) - the third volume, composed of sixteen chapters, describes the main interfaces and applications of AI (Volume 3. Interfaces and applications of AI). This second volume presents the main families of algorithms developed or used in AI to learn, to infer, to decide. Generic approaches to problem solving are presented: ordered heuristic search, as well as metaheuristics are considered. Algorithms for processing logic-based representations of various types (first-order formulae, propositional formulae, logic programs, etc.) and graphical models of various types (standard constraint networks, valued ones, Bayes nets, Markov random fields, etc.) are presented. The volume also focuses on algorithms which have been developed to simulate specific ‘intelligent” processes such as planning, playing, learning, and extracting knowledge from data. Finally, an afterword draws a parallel between algorithmic problems in operation research and in AI.



Probabilistic Graphical Models For Genetics Genomics And Postgenomics


Probabilistic Graphical Models For Genetics Genomics And Postgenomics
DOWNLOAD
Author : Christine Sinoquet
language : en
Publisher: OUP Oxford
Release Date : 2014-09-18

Probabilistic Graphical Models For Genetics Genomics And Postgenomics written by Christine Sinoquet and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-18 with Science categories.


Nowadays bioinformaticians and geneticists are faced with myriad high-throughput data usually presenting the characteristics of uncertainty, high dimensionality and large complexity. These data will only allow insights into this wealth of so-called 'omics' data if represented by flexible and scalable models, prior to any further analysis. At the interface between statistics and machine learning, probabilistic graphical models (PGMs) represent a powerful formalism to discover complex networks of relations. These models are also amenable to incorporating a priori biological information. Network reconstruction from gene expression data represents perhaps the most emblematic area of research where PGMs have been successfully applied. However these models have also created renewed interest in genetics in the broad sense, in particular regarding association genetics, causality discovery, prediction of outcomes, detection of copy number variations, and epigenetics. This book provides an overview of the applications of PGMs to genetics, genomics and postgenomics to meet this increased interest. A salient feature of bioinformatics, interdisciplinarity, reaches its limit when an intricate cooperation between domain specialists is requested. Currently, few people are specialists in the design of advanced methods using probabilistic graphical models for postgenomics or genetics. This book deciphers such models so that their perceived difficulty no longer hinders their use and focuses on fifteen illustrations showing the mechanisms behind the models. Probabilistic Graphical Models for Genetics, Genomics and Postgenomics covers six main themes: (1) Gene network inference (2) Causality discovery (3) Association genetics (4) Epigenetics (5) Detection of copy number variations (6) Prediction of outcomes from high-dimensional genomic data. Written by leading international experts, this is a collection of the most advanced work at the crossroads of probabilistic graphical models and genetics, genomics, and postgenomics. The self-contained chapters provide an enlightened account of the pros and cons of applying these powerful techniques.