[PDF] Probabilistic Graphical Models For Genetics Genomics And Postgenomics - eBooks Review

Probabilistic Graphical Models For Genetics Genomics And Postgenomics


Probabilistic Graphical Models For Genetics Genomics And Postgenomics
DOWNLOAD

Download Probabilistic Graphical Models For Genetics Genomics And Postgenomics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Graphical Models For Genetics Genomics And Postgenomics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Probabilistic Graphical Models For Genetics Genomics And Postgenomics


Probabilistic Graphical Models For Genetics Genomics And Postgenomics
DOWNLOAD
Author : Christine Sinoquet
language : en
Publisher: OUP Oxford
Release Date : 2014-09-18

Probabilistic Graphical Models For Genetics Genomics And Postgenomics written by Christine Sinoquet and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-18 with Science categories.


Nowadays bioinformaticians and geneticists are faced with myriad high-throughput data usually presenting the characteristics of uncertainty, high dimensionality and large complexity. These data will only allow insights into this wealth of so-called 'omics' data if represented by flexible and scalable models, prior to any further analysis. At the interface between statistics and machine learning, probabilistic graphical models (PGMs) represent a powerful formalism to discover complex networks of relations. These models are also amenable to incorporating a priori biological information. Network reconstruction from gene expression data represents perhaps the most emblematic area of research where PGMs have been successfully applied. However these models have also created renewed interest in genetics in the broad sense, in particular regarding association genetics, causality discovery, prediction of outcomes, detection of copy number variations, and epigenetics. This book provides an overview of the applications of PGMs to genetics, genomics and postgenomics to meet this increased interest. A salient feature of bioinformatics, interdisciplinarity, reaches its limit when an intricate cooperation between domain specialists is requested. Currently, few people are specialists in the design of advanced methods using probabilistic graphical models for postgenomics or genetics. This book deciphers such models so that their perceived difficulty no longer hinders their use and focuses on fifteen illustrations showing the mechanisms behind the models. Probabilistic Graphical Models for Genetics, Genomics and Postgenomics covers six main themes: (1) Gene network inference (2) Causality discovery (3) Association genetics (4) Epigenetics (5) Detection of copy number variations (6) Prediction of outcomes from high-dimensional genomic data. Written by leading international experts, this is a collection of the most advanced work at the crossroads of probabilistic graphical models and genetics, genomics, and postgenomics. The self-contained chapters provide an enlightened account of the pros and cons of applying these powerful techniques.



Probabilistic Graphical Models For Genetics Genomics And Postgenomics


Probabilistic Graphical Models For Genetics Genomics And Postgenomics
DOWNLOAD
Author : Raphaël Mourad
language : en
Publisher: OUP Oxford
Release Date : 2014-09-18

Probabilistic Graphical Models For Genetics Genomics And Postgenomics written by Raphaël Mourad and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-18 with Science categories.


Nowadays bioinformaticians and geneticists are faced with myriad high-throughput data usually presenting the characteristics of uncertainty, high dimensionality and large complexity. These data will only allow insights into this wealth of so-called 'omics' data if represented by flexible and scalable models, prior to any further analysis. At the interface between statistics and machine learning, probabilistic graphical models (PGMs) represent a powerful formalism to discover complex networks of relations. These models are also amenable to incorporating a priori biological information. Network reconstruction from gene expression data represents perhaps the most emblematic area of research where PGMs have been successfully applied. However these models have also created renewed interest in genetics in the broad sense, in particular regarding association genetics, causality discovery, prediction of outcomes, detection of copy number variations, and epigenetics. This book provides an overview of the applications of PGMs to genetics, genomics and postgenomics to meet this increased interest. A salient feature of bioinformatics, interdisciplinarity, reaches its limit when an intricate cooperation between domain specialists is requested. Currently, few people are specialists in the design of advanced methods using probabilistic graphical models for postgenomics or genetics. This book deciphers such models so that their perceived difficulty no longer hinders their use and focuses on fifteen illustrations showing the mechanisms behind the models. Probabilistic Graphical Models for Genetics, Genomics and Postgenomics covers six main themes: (1) Gene network inference (2) Causality discovery (3) Association genetics (4) Epigenetics (5) Detection of copy number variations (6) Prediction of outcomes from high-dimensional genomic data. Written by leading international experts, this is a collection of the most advanced work at the crossroads of probabilistic graphical models and genetics, genomics, and postgenomics. The self-contained chapters provide an enlightened account of the pros and cons of applying these powerful techniques.



Big Data Analytics In Genomics


Big Data Analytics In Genomics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher: Springer
Release Date : 2016-10-24

Big Data Analytics In Genomics written by Ka-Chun Wong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-24 with Computers categories.


This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.



Probabilistic Graphical Models


Probabilistic Graphical Models
DOWNLOAD
Author : Linda C. van der Gaag
language : en
Publisher: Springer
Release Date : 2014-09-11

Probabilistic Graphical Models written by Linda C. van der Gaag and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-11 with Computers categories.


This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.



Bayesian Networks


Bayesian Networks
DOWNLOAD
Author : Marco Scutari
language : en
Publisher: CRC Press
Release Date : 2021-07-28

Bayesian Networks written by Marco Scutari and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Computers categories.


Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation. The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts. Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios. Online supplementary materials include the data sets and the code used in the book, which will all be made available from https://www.bnlearn.com/book-crc-2ed/



Algebraic Statistics


Algebraic Statistics
DOWNLOAD
Author : Seth Sullivant
language : en
Publisher: American Mathematical Society
Release Date : 2023-11-17

Algebraic Statistics written by Seth Sullivant and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-17 with Mathematics categories.


Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.



Enhanced Quality Of Life And Smart Living


Enhanced Quality Of Life And Smart Living
DOWNLOAD
Author : Mounir Mokhtari
language : en
Publisher: Springer
Release Date : 2017-08-21

Enhanced Quality Of Life And Smart Living written by Mounir Mokhtari and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-21 with Computers categories.


This book constitutes the proceedings of the 15th International Conference on Smart Homes and Health Telematics, ICOST 2017, held in Paris, France, in August 2017. The 18 regular papers, 5 short papers together with 2 invited talks included in this volume were carefully reviewed and selected from numerous submissions. The conference features a dynamic program incorporating a range of design, development, deployment and evaluation of Smart Urban Environments, Assistive Technologies, Chronic Disease Management, Coaching and Health Telematics systems.



Systems Biology In Animal Production And Health Vol 1


Systems Biology In Animal Production And Health Vol 1
DOWNLOAD
Author : Haja N. Kadarmideen
language : en
Publisher: Springer
Release Date : 2016-10-26

Systems Biology In Animal Production And Health Vol 1 written by Haja N. Kadarmideen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-26 with Science categories.


This two-volume work provides an overview on various state of the art experimental and statistical methods, modeling approaches and software tools that are available to generate, integrate and analyze multi-omics datasets in order to detect biomarkers, genetic markers and potential causal genes for improved animal production and health. The book will contain online resources where additional data and programs can be accessed. Some chapters also come with computer programming codes and example datasets to provide readers hands-on (computer) exercises. This first volume presents the basic principles and concepts of systems biology with theoretical foundations including genetic, co-expression and metabolic networks. It will introduce to multi omics components of systems biology from genomics, through transcriptomics, proteomics to metabolomics. In addition it will highlight statistical methods and (bioinformatic) tools available to model and analyse these data sets along with phenotypes in animal production and health. This book is suitable for both students and teachers in animal sciences and veterinary medicine as well as to researchers in this discipline.



Data Analysis And Visualization In Genomics And Proteomics


Data Analysis And Visualization In Genomics And Proteomics
DOWNLOAD
Author : Francisco Azuaje
language : en
Publisher: John Wiley & Sons
Release Date : 2005-06-24

Data Analysis And Visualization In Genomics And Proteomics written by Francisco Azuaje and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-24 with Science categories.


Data Analysis and Visualization in Genomics and Proteomics is the first book addressing integrative data analysis and visualization in this field. It addresses important techniques for the interpretation of data originating from multiple sources, encoded in different formats or protocols, and processed by multiple systems. One of the first systematic overviews of the problem of biological data integration using computational approaches This book provides scientists and students with the basis for the development and application of integrative computational methods to analyse biological data on a systemic scale Places emphasis on the processing of multiple data and knowledge resources, and the combination of different models and systems



Bioinformatics For Dummies


Bioinformatics For Dummies
DOWNLOAD
Author : Jean-Michel Claverie
language : en
Publisher: John Wiley & Sons
Release Date : 2011-02-10

Bioinformatics For Dummies written by Jean-Michel Claverie and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-10 with Science categories.


Were you always curious about biology but were afraid to sit through long hours of dense reading? Did you like the subject when you were in high school but had other plans after you graduated? Now you can explore the human genome and analyze DNA without ever leaving your desktop! Bioinformatics For Dummies is packed with valuable information that introduces you to this exciting new discipline. This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You’ll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to: Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what’s going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro!