[PDF] Groups Matrices And Vector Spaces - eBooks Review

Groups Matrices And Vector Spaces


Groups Matrices And Vector Spaces
DOWNLOAD

Download Groups Matrices And Vector Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Groups Matrices And Vector Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Groups Matrices And Vector Spaces


Groups Matrices And Vector Spaces
DOWNLOAD
Author : James B. Carrell
language : en
Publisher: Springer
Release Date : 2017-09-02

Groups Matrices And Vector Spaces written by James B. Carrell and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-02 with Mathematics categories.


This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.



Matrix Groups


Matrix Groups
DOWNLOAD
Author : M. L. Curtis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Matrix Groups written by M. L. Curtis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.



Introduction To Applied Linear Algebra


Introduction To Applied Linear Algebra
DOWNLOAD
Author : Stephen Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2018-06-07

Introduction To Applied Linear Algebra written by Stephen Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-07 with Business & Economics categories.


A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.



Finitely Generated Abelian Groups And Similarity Of Matrices Over A Field


Finitely Generated Abelian Groups And Similarity Of Matrices Over A Field
DOWNLOAD
Author : Christopher Norman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-25

Finitely Generated Abelian Groups And Similarity Of Matrices Over A Field written by Christopher Norman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Mathematics categories.


At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common. However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases. Starting with matrices over the integers, Part 1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical. The analogous theory of matrix similarity over a field is then developed in Part 2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal. Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form. The reader is assumed to be familiar with the elementary properties of rings and fields. Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of vector spaces is widened to modules over commutative rings. Based on a lecture course taught by the author for nearly thirty years, the book emphasises algorithmic techniques and features numerous worked examples and exercises with solutions. The early chapters form an ideal second course in algebra for second and third year undergraduates. The later chapters, which cover closely related topics, e.g. field extensions, endomorphism rings, automorphism groups, and variants of the canonical forms, will appeal to more advanced students. The book is a bridge between linear and abstract algebra.



Linear Algebra And Group Theory


Linear Algebra And Group Theory
DOWNLOAD
Author : V.I. Smirnov
language : en
Publisher: Courier Corporation
Release Date : 2013-08-16

Linear Algebra And Group Theory written by V.I. Smirnov and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-16 with Mathematics categories.


Derived from an encyclopedic six-volume survey, this accessible text by a prominent Soviet mathematician offers a concrete approach, with an emphasis on applications. Containing material not otherwise available to English-language readers, the three-part treatment covers determinants and systems of equations, matrix theory, and group theory. Problem sets, with hints and answers, conclude each chapter. 1961 edition.



Group Matrices Group Determinants And Representation Theory


Group Matrices Group Determinants And Representation Theory
DOWNLOAD
Author : Kenneth W. Johnson
language : en
Publisher: Springer Nature
Release Date : 2019-11-08

Group Matrices Group Determinants And Representation Theory written by Kenneth W. Johnson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-08 with Mathematics categories.


This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.



Matrix Groups For Undergraduates


Matrix Groups For Undergraduates
DOWNLOAD
Author : Kristopher Tapp
language : en
Publisher: American Mathematical Soc.
Release Date : 2016-04-07

Matrix Groups For Undergraduates written by Kristopher Tapp and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-07 with Mathematics categories.


Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.



Matrix Groups


Matrix Groups
DOWNLOAD
Author : Andrew Baker
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Matrix Groups written by Andrew Baker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Aimed at advanced undergraduate and beginning graduate students, this book provides a first taste of the theory of Lie groups as an appetiser for a more substantial further course. Lie theoretic ideas lie at the heart of much of standard undergraduate linear algebra and exposure to them can inform or motivate the study of the latter. The main focus is on matrix groups, i.e., closed subgroups of real and complex general linear groups. The first part studies examples and describes the classical families of simply connected compact groups. The second part introduces the idea of a lie group and studies the associated notion of a homogeneous space using orbits of smooth actions. Throughout, the emphasis is on providing an approach that is accessible to readers equipped with a standard undergraduate toolkit of algebra and analysis. Although the formal prerequisites are kept as low level as possible, the subject matter is sophisticated and contains many of the key themes of the fully developed theory, preparing students for a more standard and abstract course in Lie theory and differential geometry.



An Introduction To Linear Algebra


An Introduction To Linear Algebra
DOWNLOAD
Author : L. Mirsky
language : en
Publisher: Courier Corporation
Release Date : 2012-12-03

An Introduction To Linear Algebra written by L. Mirsky and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-03 with Mathematics categories.


Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.



The Geometry Of The Classical Groups


The Geometry Of The Classical Groups
DOWNLOAD
Author : Donald E. Taylor
language : en
Publisher:
Release Date : 1992

The Geometry Of The Classical Groups written by Donald E. Taylor and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Mathematics categories.