[PDF] Handbook Of Approximate Bayesian Computation - eBooks Review

Handbook Of Approximate Bayesian Computation


Handbook Of Approximate Bayesian Computation
DOWNLOAD

Download Handbook Of Approximate Bayesian Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Approximate Bayesian Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Handbook Of Approximate Bayesian Computation


Handbook Of Approximate Bayesian Computation
DOWNLOAD
Author : Scott A. Sisson
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Handbook Of Approximate Bayesian Computation written by Scott A. Sisson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.



Handbook Of Approximate Bayesian Computation


Handbook Of Approximate Bayesian Computation
DOWNLOAD
Author : Scott A. Sisson
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Handbook Of Approximate Bayesian Computation written by Scott A. Sisson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.



Bayesian Modeling And Computation In Python


Bayesian Modeling And Computation In Python
DOWNLOAD
Author : Osvaldo A. Martin
language : en
Publisher: CRC Press
Release Date : 2021-12-28

Bayesian Modeling And Computation In Python written by Osvaldo A. Martin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-28 with Computers categories.


Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.



Handbook Of Mixture Analysis


Handbook Of Mixture Analysis
DOWNLOAD
Author : Sylvia Fruhwirth-Schnatter
language : en
Publisher: CRC Press
Release Date : 2019-01-04

Handbook Of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Computers categories.


Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.



Bayesian Data Analysis Third Edition


Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01

Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.



Bayesian Filtering And Smoothing


Bayesian Filtering And Smoothing
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2013-09-05

Bayesian Filtering And Smoothing written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-05 with Computers categories.


A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.



Bayesian Networks


Bayesian Networks
DOWNLOAD
Author : Olivier Pourret
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-30

Bayesian Networks written by Olivier Pourret and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-30 with Mathematics categories.


Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.



Nonlinear Structures Systems Volume 1


Nonlinear Structures Systems Volume 1
DOWNLOAD
Author : Matthew R.W. Brake
language : en
Publisher: Springer Nature
Release Date : 2022-07-28

Nonlinear Structures Systems Volume 1 written by Matthew R.W. Brake and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-28 with Technology & Engineering categories.


Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the first volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Experimental Nonlinear Dynamics Jointed Structures: Identification, Mechanics, Dynamics Nonlinear Damping Nonlinear Modeling and Simulation Nonlinear Reduced-Order Modeling Nonlinearity and System Identification



Computational Immunology


Computational Immunology
DOWNLOAD
Author : Shyamasree Ghosh
language : en
Publisher: CRC Press
Release Date : 2020-01-31

Computational Immunology written by Shyamasree Ghosh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Medical categories.


Computational Immunology: Applications focuses on different mathematical models, statistical tools, techniques, and computational modelling that helps in understanding complex phenomena of the immune system and its biological functions. The book also focuses on the latest developments in computational biology in designing of drugs, targets, biomarkers for early detection and prognosis of a disease. It highlights the applications of computational methods in deciphering the complex processes of the immune system and its role in health and disease. This book discusses the most essential topics, including Next generation sequencing (NGS) and computational immunology Computational modelling and biology of diseases Drug designing Computation and identification of biomarkers Application in organ transplantation Application in disease detection and therapy Computational methods and applications in understanding of the invertebrate immune system S Ghosh is MSc, PhD, PGDHE, PGDBI, is PhD from IICB, CSIR, Kolkata, awarded the prestigious National Scholarship from the Government of India. She has worked and published extensively in glycobiology, sialic acids, immunology, stem cells and nanotechnology. She has authored several publications that include books and encyclopedia chapters in reputed journals and books.



Models And Methods For Biological Evolution


Models And Methods For Biological Evolution
DOWNLOAD
Author : Gilles Didier
language : en
Publisher: John Wiley & Sons
Release Date : 2024-04-10

Models And Methods For Biological Evolution written by Gilles Didier and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-10 with Science categories.


Biological evolution is the phenomenon concerning how species are born, are transformed or disappear over time. Its study relies on sophisticated methods that involve both mathematical modeling of the biological processes at play and the design of efficient algorithms to fit these models to genetic and morphological data. Models and Methods for Biological Evolution outlines the main methods to study evolution and provides a broad overview illustrating the variety of formal approaches used, notably including combinatorial optimization, stochastic models and statistical inference techniques. Some of the most relevant applications of these methods are detailed, concerning, for example, the study of migratory events of ancient human populations or the progression of epidemics. This book should thus be of interest to applied mathematicians interested in central problems in biology, and to biologists eager to get a deeper understanding of widely used techniques of evolutionary data analysis.