Hands On Neuroevolution With Python

DOWNLOAD
Download Hands On Neuroevolution With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Neuroevolution With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Neuroevolution With Python
DOWNLOAD
Author : Iaroslav Omelianenko
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-24
Hands On Neuroevolution With Python written by Iaroslav Omelianenko and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-24 with Computers categories.
Increase the performance of various neural network architectures using NEAT, HyperNEAT, ES-HyperNEAT, Novelty Search, SAFE, and deep neuroevolution Key FeaturesImplement neuroevolution algorithms to improve the performance of neural network architecturesUnderstand evolutionary algorithms and neuroevolution methods with real-world examplesLearn essential neuroevolution concepts and how they are used in domains including games, robotics, and simulationsBook Description Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments. What you will learnDiscover the most popular neuroevolution algorithms – NEAT, HyperNEAT, and ES-HyperNEATExplore how to implement neuroevolution-based algorithms in PythonGet up to speed with advanced visualization tools to examine evolved neural network graphsUnderstand how to examine the results of experiments and analyze algorithm performanceDelve into neuroevolution techniques to improve the performance of existing methodsApply deep neuroevolution to develop agents for playing Atari gamesWho this book is for This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking to implement neuroevolution algorithms from scratch. Working knowledge of the Python programming language and basic knowledge of deep learning and neural networks are mandatory.
Hands On Genetic Algorithms With Python
DOWNLOAD
Author : Eyal Wirsansky
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Hands On Genetic Algorithms With Python written by Eyal Wirsansky and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
Hands On Reinforcement Learning For Games
DOWNLOAD
Author : Micheal Lanham
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-03
Hands On Reinforcement Learning For Games written by Micheal Lanham and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-03 with Computers categories.
Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to grips with the different reinforcement and DRL algorithms for game developmentLearn how to implement components such as artificial agents, map and level generation, and audio generationGain insights into cutting-edge RL research and understand how it is similar to artificial general researchBook Description With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learnUnderstand how deep learning can be integrated into an RL agentExplore basic to advanced algorithms commonly used in game developmentBuild agents that can learn and solve problems in all types of environmentsTrain a Deep Q-Network (DQN) agent to solve the CartPole balancing problemDevelop game AI agents by understanding the mechanism behind complex AIIntegrate all the concepts learned into new projects or gaming agentsWho this book is for If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.
The Nature Of Code
DOWNLOAD
Author : Daniel Shiffman
language : en
Publisher: No Starch Press
Release Date : 2024-09-03
The Nature Of Code written by Daniel Shiffman and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-03 with Computers categories.
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Artificial Intelligence And Games
DOWNLOAD
Author : Georgios N. Yannakakis
language : en
Publisher: Springer
Release Date : 2018-02-17
Artificial Intelligence And Games written by Georgios N. Yannakakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-17 with Computers categories.
This is the first textbook dedicated to explaining how artificial intelligence (AI) techniques can be used in and for games. After introductory chapters that explain the background and key techniques in AI and games, the authors explain how to use AI to play games, to generate content for games and to model players. The book will be suitable for undergraduate and graduate courses in games, artificial intelligence, design, human-computer interaction, and computational intelligence, and also for self-study by industrial game developers and practitioners. The authors have developed a website (http://www.gameaibook.org) that complements the material covered in the book with up-to-date exercises, lecture slides and reading.
Deep Reinforcement Learning Hands On
DOWNLOAD
Author : Maxim Lapan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-11-12
Deep Reinforcement Learning Hands On written by Maxim Lapan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-12 with Computers categories.
Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation Develop deep RL models, improve their stability, and efficiently solve complex environments New content on RL from human feedback (RLHF), MuZero, and transformers Book Description Start your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers. The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companion What you will learn Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG Implement RL algorithms using PyTorch and modern RL libraries Build and train deep Q-networks to solve complex tasks in Atari environments Speed up RL models using algorithmic and engineering approaches Leverage advanced techniques like proximal policy optimization (PPO) for more stable training Who this book is for This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it’s also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance
Proceedings Of Ninth International Congress On Information And Communication Technology
DOWNLOAD
Author : Xin-She Yang
language : en
Publisher: Springer Nature
Release Date : 2024-08-09
Proceedings Of Ninth International Congress On Information And Communication Technology written by Xin-She Yang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-09 with Technology & Engineering categories.
This book gathers selected high-quality research papers presented at the Ninth International Congress on Information and Communication Technology, held in London, on February 19–22, 2024. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of Things (IoT), and e-mining. Written by respected experts and researchers working on ICT, the book offers an asset for young researchers involved in advanced studies. The work is presented in ten volumes.
Information And Communication Technologies In Education Research And Industrial Applications
DOWNLOAD
Author : Grigoris Antoniou
language : en
Publisher: Springer Nature
Release Date : 2023-11-30
Information And Communication Technologies In Education Research And Industrial Applications written by Grigoris Antoniou and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-30 with Education categories.
This book constitutes the proceedings of the 18th International Conference, ICTERI 2023, held in Ivano-Frankivsk, Ukraine, during September 18–22, 2023. The 21 full papers included in this volume were carefully reviewed and selected from 90 submissions. The volume focuses on research advances in ICT, business or academic applications of ICT, and design and deployment of ICT infrastructures.
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
General Video Game Artificial Intelligence
DOWNLOAD
Author : Diego Pérez Liébana
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2019-10-09
General Video Game Artificial Intelligence written by Diego Pérez Liébana and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-09 with Computers categories.
Research on general video game playing aims at designing agents or content generators that can perform well in multiple video games, possibly without knowing the game in advance and with little to no specific domain knowledge. The general video game AI framework and competition propose a challenge in which researchers can test their favorite AI methods with a potentially infinite number of games created using the Video Game Description Language. The open-source framework has been used since 2014 for running a challenge. Competitors around the globe submit their best approaches that aim to generalize well across games. Additionally, the framework has been used in AI modules by many higher-education institutions as assignments, or as proposed projects for final year (undergraduate and Master's) students and Ph.D. candidates. The present book, written by the developers and organizers of the framework, presents the most interesting highlights of the research performed by the authors during these years in this domain. It showcases work on methods to play the games, generators of content, and video game optimization. It also outlines potential further work in an area that offers multiple research directions for the future.