[PDF] Hands On Python And Pytorch - eBooks Review

Hands On Python And Pytorch


Hands On Python And Pytorch
DOWNLOAD

Download Hands On Python And Pytorch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Python And Pytorch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Python And Pytorch


Hands On Python And Pytorch
DOWNLOAD
Author : Sarful Hassan
language : en
Publisher: Independently Published
Release Date : 2025-02-04

Hands On Python And Pytorch written by Sarful Hassan and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-04 with Computers categories.


Hands-On Python and PyTorch: A Practical Guide to Deep Learning Master Deep Learning with Python and PyTorch Are you ready to dive into the world of deep learning and AI? Hands-On Python and PyTorch: A Practical Guide to Deep Learning is your step-by-step companion to mastering neural networks, machine learning models, and real-world AI applications with Python and PyTorch. Why This Book? ✅ Comprehensive & Hands-On - Covers everything from basic PyTorch operations to advanced deep learning techniques. ✅ Real-World Applications - Learn to build image classifiers, NLP models, GANs, and reinforcement learning systems. ✅ AI & Deep Learning Integration - Understand how PyTorch works with TensorFlow, OpenCV, and other AI frameworks. ✅ Optimized for Python - Uses Python 3.x for efficient and scalable implementation. ✅ Beginner to Expert Guide - Suitable for students, developers, data scientists, and AI enthusiasts looking to master PyTorch and deep learning. What You'll Learn ✔️ Setting up PyTorch and Python for deep learning projects ✔️ Core PyTorch concepts: Tensors, Autograd, and Modules ✔️ Building and training neural networks from scratch ✔️ Advanced optimization techniques and model tuning ✔️ Real-time applications in computer vision, NLP, and reinforcement learning ✔️ Deploying AI models efficiently for production Who Should Read This Book?



Hands On One Shot Learning With Python


Hands On One Shot Learning With Python
DOWNLOAD
Author : Shruti Jadon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-04-10

Hands On One Shot Learning With Python written by Shruti Jadon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.


Get to grips with building powerful deep learning models using PyTorch and scikit-learn Key FeaturesLearn how you can speed up the deep learning process with one-shot learningUse Python and PyTorch to build state-of-the-art one-shot learning modelsExplore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learningBook Description One-shot learning has been an active field of research for scientists trying to develop a cognitive machine that mimics human learning. With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples. Hands-On One-shot Learning with Python will guide you through the exploration and design of deep learning models that can obtain information about an object from one or just a few training samples. The book begins with an overview of deep learning and one-shot learning and then introduces you to the different methods you can use to achieve it, such as deep learning architectures and probabilistic models. Once you've got to grips with the core principles, you'll explore real-world examples and implementations of one-shot learning using PyTorch 1.x on datasets such as Omniglot and MiniImageNet. Finally, you'll explore generative modeling-based methods and discover the key considerations for building systems that exhibit human-level intelligence. By the end of this book, you'll be well-versed with the different one- and few-shot learning methods and be able to use them to build your own deep learning models. What you will learnGet to grips with the fundamental concepts of one- and few-shot learningWork with different deep learning architectures for one-shot learningUnderstand when to use one-shot and transfer learning, respectivelyStudy the Bayesian network approach for one-shot learningImplement one-shot learning approaches based on metrics, models, and optimization in PyTorchDiscover different optimization algorithms that help to improve accuracy even with smaller volumes of dataExplore various one-shot learning architectures based on classification and regressionWho this book is for If you're an AI researcher or a machine learning or deep learning expert looking to explore one-shot learning, this book is for you. It will help you get started with implementing various one-shot techniques to train models faster. Some Python programming experience is necessary to understand the concepts covered in this book.



Hands On Machine Learning With Python


Hands On Machine Learning With Python
DOWNLOAD
Author : Ashwin Pajankar
language : en
Publisher: Apress
Release Date : 2022-03-20

Hands On Machine Learning With Python written by Ashwin Pajankar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-20 with Computers categories.


Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll Learn Review data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithm Understand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networks Get acquainted with scikit-learn and PyTorch Predict sequences in recurrent neural networks and long short term memory Who This Book Is For Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.



Pytorch Deep Learning Hands On


Pytorch Deep Learning Hands On
DOWNLOAD
Author : Sherin Thomas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30

Pytorch Deep Learning Hands On written by Sherin Thomas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.



Hands On Natural Language Processing With Pytorch 1 X


Hands On Natural Language Processing With Pytorch 1 X
DOWNLOAD
Author : Thomas Dop
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-09

Hands On Natural Language Processing With Pytorch 1 X written by Thomas Dop and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-09 with Computers categories.


Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key FeaturesGet to grips with word embeddings, semantics, labeling, and high-level word representations using practical examplesLearn modern approaches to NLP and explore state-of-the-art NLP models using PyTorchImprove your NLP applications with innovative neural networks such as RNNs, LSTMs, and CNNsBook Description In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them. What you will learnUse NLP techniques for understanding, processing, and generating textUnderstand PyTorch, its applications and how it can be used to build deep linguistic modelsExplore the wide variety of deep learning architectures for NLPDevelop the skills you need to process and represent both structured and unstructured NLP dataBecome well-versed with state-of-the-art technologies and exciting new developments in the NLP domainCreate chatbots using attention-based neural networksWho this book is for This PyTorch book is for NLP developers, machine learning and deep learning developers, and anyone interested in building intelligent language applications using both traditional NLP approaches and deep learning architectures. If you’re looking to adopt modern NLP techniques and models for your development projects, this book is for you. Working knowledge of Python programming, along with basic working knowledge of NLP tasks, is required.



Hands On Gpu Computing With Python


Hands On Gpu Computing With Python
DOWNLOAD
Author : Avimanyu Bandyopadhyay
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-14

Hands On Gpu Computing With Python written by Avimanyu Bandyopadhyay and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-14 with Computers categories.


Explore GPU-enabled programmable environment for machine learning, scientific applications, and gaming using PuCUDA, PyOpenGL, and Anaconda Accelerate Key FeaturesUnderstand effective synchronization strategies for faster processing using GPUsWrite parallel processing scripts with PyCuda and PyOpenCLLearn to use the CUDA libraries like CuDNN for deep learning on GPUsBook Description GPUs are proving to be excellent general purpose-parallel computing solutions for high performance tasks such as deep learning and scientific computing. This book will be your guide to getting started with GPU computing. It will start with introducing GPU computing and explain the architecture and programming models for GPUs. You will learn, by example, how to perform GPU programming with Python, and you’ll look at using integrations such as PyCUDA, PyOpenCL, CuPy and Numba with Anaconda for various tasks such as machine learning and data mining. Going further, you will get to grips with GPU work flows, management, and deployment using modern containerization solutions. Toward the end of the book, you will get familiar with the principles of distributed computing for training machine learning models and enhancing efficiency and performance. By the end of this book, you will be able to set up a GPU ecosystem for running complex applications and data models that demand great processing capabilities, and be able to efficiently manage memory to compute your application effectively and quickly. What you will learnUtilize Python libraries and frameworks for GPU accelerationSet up a GPU-enabled programmable machine learning environment on your system with AnacondaDeploy your machine learning system on cloud containers with illustrated examplesExplore PyCUDA and PyOpenCL and compare them with platforms such as CUDA, OpenCL and ROCm.Perform data mining tasks with machine learning models on GPUsExtend your knowledge of GPU computing in scientific applicationsWho this book is for Data Scientist, Machine Learning enthusiasts and professionals who wants to get started with GPU computation and perform the complex tasks with low-latency. Intermediate knowledge of Python programming is assumed.



Deep Learning With Pytorch Quick Start Guide


Deep Learning With Pytorch Quick Start Guide
DOWNLOAD
Author : David Julian
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-24

Deep Learning With Pytorch Quick Start Guide written by David Julian and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-24 with Computers categories.


Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key FeaturesClear and concise explanationsGives important insights into deep learning modelsPractical demonstration of key conceptsBook Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learnSet up the deep learning environment using the PyTorch libraryLearn to build a deep learning model for image classificationUse a convolutional neural network for transfer learningUnderstand to use PyTorch for natural language processingUse a recurrent neural network to classify textUnderstand how to optimize PyTorch in multiprocessor and distributed environmentsTrain, optimize, and deploy your neural networks for maximum accuracy and performanceLearn to deploy production-ready modelsWho this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.



Mastering Pytorch


Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-05-31

Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-31 with Computers categories.


Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Understand how to use PyTorch to build advanced neural network models Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks Book DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text, vision, and music generation models using PyTorch Build a deep Q-network (DQN) model in PyTorch Deploy PyTorch models on mobile devices (Android and iOS) Become well versed in rapid prototyping using PyTorch with fastai Perform neural architecture search effectively using AutoML Easily interpret machine learning models using Captum Design ResNets, LSTMs, and graph neural networks (GNNs) Create language and vision transformer models using Hugging Face Who this book is for This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Nikhil Ketkar
language : en
Publisher: Apress
Release Date : 2021-04-10

Deep Learning With Python written by Nikhil Ketkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-10 with Computers categories.


Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook’s Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. What You'll Learn Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models Who This Book Is For Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.



Hands On Computer Vision With Detectron2


Hands On Computer Vision With Detectron2
DOWNLOAD
Author : Van Vung Pham
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-04-14

Hands On Computer Vision With Detectron2 written by Van Vung Pham and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-14 with Computers categories.


Explore Detectron2 using cutting-edge models and learn all about implementing future computer vision applications in custom domains Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to tackle common computer vision tasks in modern businesses with Detectron2 Leverage Detectron2 performance tuning techniques to control the model's finest details Deploy Detectron2 models into production and develop Detectron2 models for mobile devices Book Description Computer vision is a crucial component of many modern businesses, including automobiles, robotics, and manufacturing, and its market is growing rapidly. This book helps you explore Detectron2, Facebook's next-gen library providing cutting-edge detection and segmentation algorithms. It's used in research and practical projects at Facebook to support computer vision tasks, and its models can be exported to TorchScript or ONNX for deployment. The book provides you with step-by-step guidance on using existing models in Detectron2 for computer vision tasks (object detection, instance segmentation, key-point detection, semantic detection, and panoptic segmentation). You'll get to grips with the theories and visualizations of Detectron2's architecture and learn how each module in Detectron2 works. As you advance, you'll build your practical skills by working on two real-life projects (preparing data, training models, fine-tuning models, and deployments) for object detection and instance segmentation tasks using Detectron2. Finally, you'll deploy Detectron2 models into production and develop Detectron2 applications for mobile devices. By the end of this deep learning book, you'll have gained sound theoretical knowledge and useful hands-on skills to help you solve advanced computer vision tasks using Detectron2. What you will learn Build computer vision applications using existing models in Detectron2 Grasp the concepts underlying Detectron2's architecture and components Develop real-life projects for object detection and object segmentation using Detectron2 Improve model accuracy using Detectron2's performance-tuning techniques Deploy Detectron2 models into server environments with ease Develop and deploy Detectron2 models into browser and mobile environments Who this book is for If you are a deep learning application developer, researcher, or software developer with some prior knowledge about deep learning, this book is for you to get started and develop deep learning models for computer vision applications. Even if you are an expert in computer vision and curious about the features of Detectron2, or you would like to learn some cutting-edge deep learning design patterns, you will find this book helpful. Some HTML, Android, and C++ programming skills are advantageous if you want to deploy computer vision applications using these platforms.