High Dimensional Microarray Data Analysis

DOWNLOAD
Download High Dimensional Microarray Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Dimensional Microarray Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
High Dimensional Microarray Data Analysis
DOWNLOAD
Author : Shuichi Shinmura
language : en
Publisher: Springer
Release Date : 2019-05-14
High Dimensional Microarray Data Analysis written by Shuichi Shinmura and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-14 with Medical categories.
This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks. Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratioof SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel. Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.
High Dimensional Data Analysis
DOWNLOAD
Author : Tony Cai;Xiaotong Shen
language : en
Publisher:
Release Date :
High Dimensional Data Analysis written by Tony Cai;Xiaotong Shen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.
High Dimensional Data Analysis In Cancer Research
DOWNLOAD
Author : Xiaochun Li
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-19
High Dimensional Data Analysis In Cancer Research written by Xiaochun Li and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-19 with Medical categories.
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
Exploration And Analysis Of Dna Microarray And Other High Dimensional Data
DOWNLOAD
Author : Dhammika Amaratunga
language : en
Publisher: John Wiley & Sons
Release Date : 2014-01-27
Exploration And Analysis Of Dna Microarray And Other High Dimensional Data written by Dhammika Amaratunga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-27 with Mathematics categories.
Praise for the First Edition “...extremely well written...a comprehensive and up-to-date overview of this important field.” – Journal of Environmental Quality Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition provides comprehensive coverage of recent advancements in microarray data analysis. A cutting-edge guide, the Second Edition demonstrates various methodologies for analyzing data in biomedical research and offers an overview of the modern techniques used in microarray technology to study patterns of gene activity. The new edition answers the need for an efficient outline of all phases of this revolutionary analytical technique, from preprocessing to the analysis stage. Utilizing research and experience from highly-qualified authors in fields of data analysis, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition features: A new chapter on the interpretation of findings that includes a discussion of signatures and material on gene set analysis, including network analysis New topics of coverage including ABC clustering, biclustering, partial least squares, penalized methods, ensemble methods, and enriched ensemble methods Updated exercises to deepen knowledge of the presented material and provide readers with resources for further study The book is an ideal reference for scientists in biomedical and genomics research fields who analyze DNA microarrays and protein array data, as well as statisticians and bioinformatics practitioners. Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition is also a useful text for graduate-level courses on statistics, computational biology, and bioinformatics.
Microarray Image And Data Analysis
DOWNLOAD
Author : Luis Rueda
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Microarray Image And Data Analysis written by Luis Rueda and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Science categories.
Microarray Image and Data Analysis: Theory and Practice is a compilation of the latest and greatest microarray image and data analysis methods from the multidisciplinary international research community. Delivering a detailed discussion of the biological aspects and applications of microarrays, the book: Describes the key stages of image processing, gridding, segmentation, compression, quantification, and normalization Features cutting-edge approaches to clustering, biclustering, and the reconstruction of regulatory networks Covers different types of microarrays such as DNA, protein, tissue, and low- and high-density oligonucleotide arrays Examines the current state of various microarray technologies, including their availability and affordability Explains how data generated by microarray experiments are analyzed to obtain meaningful biological conclusions An essential reference for academia and industry, Microarray Image and Data Analysis: Theory and Practice provides readers with valuable tools and techniques that extend to a wide range of biological studies and microarray platforms.
Feature Selection For High Dimensional Data
DOWNLOAD
Author : Verónica Bolón-Canedo
language : en
Publisher: Springer
Release Date : 2015-10-05
Feature Selection For High Dimensional Data written by Verónica Bolón-Canedo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-05 with Computers categories.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
Computational Intelligence And Healthcare Informatics
DOWNLOAD
Author : Om Prakash Jena
language : en
Publisher: John Wiley & Sons
Release Date : 2021-10-19
Computational Intelligence And Healthcare Informatics written by Om Prakash Jena and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-19 with Computers categories.
COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.
Dna Microarrays And Related Genomics Techniques
DOWNLOAD
Author : David B. Allison
language : en
Publisher: CRC Press
Release Date : 2005-11-14
Dna Microarrays And Related Genomics Techniques written by David B. Allison and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-14 with Mathematics categories.
Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches
Methods Of Microarray Data Analysis Iv
DOWNLOAD
Author : Jennifer S. Shoemaker
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-01-16
Methods Of Microarray Data Analysis Iv written by Jennifer S. Shoemaker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-16 with Medical categories.
As studies using microarray technology have evolved, so have the data analysis methods used to analyze these experiments. The CAMDA conference plays a role in this evolving field by providing a forum in which investors can analyze the same data sets using different methods. Methods of Microarray Data Analysis IV is the fourth book in this series, and focuses on the important issue of associating array data with a survival endpoint. Previous books in this series focused on classification (Volume I), pattern recognition (Volume II), and quality control issues (Volume III). In this volume, four lung cancer data sets are the focus of analysis. We highlight three tutorial papers, including one to assist with a basic understanding of lung cancer, a review of survival analysis in the gene expression literature, and a paper on replication. In addition, 14 papers presented at the conference are included. This book is an excellent reference for academic and industrial researchers who want to keep abreast of the state of the art of microarray data analysis. Jennifer Shoemaker is a faculty member in the Department of Biostatistics and Bioinformatics and the Director of the Bioinformatics Unit for the Cancer and Leukemia Group B Statistical Center, Duke University Medical Center. Simon Lin is a faculty member in the Department of Biostatistics and Bioinformatics and the Manager of the Duke Bioinformatics Shared Resource, Duke University Medical Center.
Resampling Based Multiple Testing
DOWNLOAD
Author : Peter H. Westfall
language : en
Publisher: John Wiley & Sons
Release Date : 1993-01-12
Resampling Based Multiple Testing written by Peter H. Westfall and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-01-12 with Mathematics categories.
Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.