[PDF] Resampling Based Multiple Testing - eBooks Review

Resampling Based Multiple Testing


Resampling Based Multiple Testing
DOWNLOAD

Download Resampling Based Multiple Testing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Resampling Based Multiple Testing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Resampling Based Multiple Testing


Resampling Based Multiple Testing
DOWNLOAD
Author : Peter H. Westfall
language : en
Publisher: John Wiley & Sons
Release Date : 1993-01-12

Resampling Based Multiple Testing written by Peter H. Westfall and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-01-12 with Mathematics categories.


Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.



Multiple Testing Problems In Pharmaceutical Statistics


Multiple Testing Problems In Pharmaceutical Statistics
DOWNLOAD
Author : Alex Dmitrienko
language : en
Publisher: CRC Press
Release Date : 2009-12-08

Multiple Testing Problems In Pharmaceutical Statistics written by Alex Dmitrienko and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-08 with Mathematics categories.


Useful Statistical Approaches for Addressing Multiplicity Issues Includes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple comparison research with an emphasis on pharmaceutical applications. In each chapter, the expert contributors describe important multiplicity problems encountered in pre-clinical and clinical trial settings. The book begins with a broad introduction from a regulatory perspective to different types of multiplicity problems that commonly arise in confirmatory controlled clinical trials, before giving an overview of the concepts, principles, and procedures of multiple testing. It then presents statistical methods for analyzing clinical dose response studies that compare several dose levels with a control as well as statistical methods for analyzing multiple endpoints in clinical trials. After covering gatekeeping procedures for testing hierarchically ordered hypotheses, the book discusses statistical approaches for the design and analysis of adaptive designs and related confirmatory hypothesis testing problems. The final chapter focuses on the design of pharmacogenomic studies based on established statistical principles. It also describes the analysis of data collected in these studies, taking into account the numerous multiplicity issues that occur. This volume explains how to solve critical issues in multiple testing encountered in pre-clinical and clinical trial applications. It presents the necessary statistical methodology, along with examples and software code to show how to use the methods in practice.



Multiple Comparisons Using R


Multiple Comparisons Using R
DOWNLOAD
Author : Frank Bretz
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Multiple Comparisons Using R written by Frank Bretz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


Adopting a unifying theme based on maximum statistics, Multiple Comparisons Using R describes the common underlying theory of multiple comparison procedures through numerous examples. It also presents a detailed description of available software implementations in R. The R packages and source code for the analyses are available at http://CRAN.R-pro



Permutation Tests


Permutation Tests
DOWNLOAD
Author : Phillip Good
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Permutation Tests written by Phillip Good and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Permutation tests permit us to choose the test statistic best suited to the task at hand. This freedom of choice opens up a thousand practical applications, including many which are beyond the reach of conventional parametric sta tistics. Flexible, robust in the face of missing data and violations of assump tions, the permutation test is among the most powerful of statistical proce dures. Through sample size reduction, permutation tests can reduce the costs of experiments and surveys. This text on the application of permutation tests in biology, medicine, science, and engineering may be used as a step-by-step self-guiding reference manual by research workers and as an intermediate text for undergraduates and graduates in statistics and the applied sciences with a first course in statistics and probability under their belts. Research workers in the applied sciences are advised to read through Chapters 1 and 2 once quickly before proceeding to Chapters 3 through 8 which cover the principal applications they are likely to encounter in practice. Chapter 9 is a must for the practitioner, with advice for coping with real life emergencies such as missing or censored data, after-the-fact covariates, and outliers. Chapter 10 uses practical applications in archeology, biology, climatology, education and social science to show the research worker how to develop new permutation statistics to meet the needs of specific applications. The practitioner will find Chapter 10 a source of inspiration as well as a practical guide to the development of new and novel statistics.



Resampling Based Multiple Testing With Applications To Microarray Data Analysis


Resampling Based Multiple Testing With Applications To Microarray Data Analysis
DOWNLOAD
Author : Dongmei Li
language : en
Publisher:
Release Date : 2009

Resampling Based Multiple Testing With Applications To Microarray Data Analysis written by Dongmei Li and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with DNA microarrays categories.


Abstract: In microarray data analysis, resampling methods are widely used to discover significantly differentially expressed genes under different biological conditions when the distributions of test statistics are unknown. When sample size is small, however, simultaneous testing of thousands, or even millions, of null hypotheses in microarray data analysis brings challenges to the multiple hypothesis testing field. We study small sample behavior of three commonly used resampling methods, including permutation tests, post-pivot resampling methods, and pre-pivot resampling methods in multiple hypothesis testing. We show the model-based pre-pivot resampling methods have the largest maximum number of unique resampled test statistic values, which tend to produce more reliable P-values than the other two resampling methods. To avoid problems with the application of the three resampling methods in practice, we propose new conditions, based on the Partitioning Principle, to control the multiple testing error rates in fixed-effects general linear models. Meanwhile, from both theoretical results and simulation studies, we show the discrepancies between the true expected values of order statistics and the expected values of order statistics estimated by permutation in the Significant Analysis of Microarrays (SAM) procedure. Moreover, we show the conditions for SAM to control the expected number of false rejections in the permutation-based SAM procedure. We also propose a more powerful adaptive two-step procedure to control the expected number of false rejections with larger critical values than the Bonferroni procedure.



Multiple Testing Procedures With Applications To Genomics


Multiple Testing Procedures With Applications To Genomics
DOWNLOAD
Author : Sandrine Dudoit
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-18

Multiple Testing Procedures With Applications To Genomics written by Sandrine Dudoit and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-18 with Computers categories.


This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. These are applied to a range of problems in biomedical and genomic research, including identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments; tests of association between gene expression measures and biological annotation metadata; sequence analysis; and genetic mapping of complex traits using single nucleotide polymorphisms. The procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions, null hypotheses, and test statistics.



Introduction To Statistics Through Resampling Methods And R


Introduction To Statistics Through Resampling Methods And R
DOWNLOAD
Author : Phillip I. Good
language : en
Publisher: John Wiley & Sons
Release Date : 2013-02-11

Introduction To Statistics Through Resampling Methods And R written by Phillip I. Good and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-11 with Mathematics categories.


A highly accessible alternative approach to basic statistics Praise for the First Edition: "Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician."—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected "hints"—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.



Multiple Comparisons And Multiple Tests Using Sas Second Edition


Multiple Comparisons And Multiple Tests Using Sas Second Edition
DOWNLOAD
Author : Peter H. Westfall
language : en
Publisher: SAS Institute
Release Date : 2011

Multiple Comparisons And Multiple Tests Using Sas Second Edition written by Peter H. Westfall and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.


New and extensively updated for SAS 9 and later, this work provides cutting-edge methods, specialized macros, and proven best bet procedures. The book also discusses the pitfalls and advantages of various methods, thereby helping readers to decide which is the most appropriate for their purposes. 644 pp. Pub. 7/11.



Feature Engineering And Selection


Feature Engineering And Selection
DOWNLOAD
Author : Max Kuhn
language : en
Publisher: CRC Press
Release Date : 2019-07-25

Feature Engineering And Selection written by Max Kuhn and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-25 with Business & Economics categories.


The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.



Handbook Of Multiple Comparisons


Handbook Of Multiple Comparisons
DOWNLOAD
Author : Xinping Cui
language : en
Publisher: CRC Press
Release Date : 2021-11-17

Handbook Of Multiple Comparisons written by Xinping Cui and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-17 with Mathematics categories.


Written by experts that include originators of some key ideas, chapters in the Handbook of Multiple Testing cover multiple comparison problems big and small, with guidance toward error rate control and insights on how principles developed earlier can be applied to current and emerging problems. Some highlights of the coverages are as follows. Error rate control is useful for controlling the incorrect decision rate. Chapter 1 introduces Tukey's original multiple comparison error rates and point to how they have been applied and adapted to modern multiple comparison problems as discussed in the later chapters. Principles endure. While the closed testing principle is more familiar, Chapter 4 shows the partitioning principle can derive confidence sets for multiple tests, which may become important as the profession goes beyond making decisions based on p-values. Multiple comparisons of treatment efficacy often involve multiple doses and endpoints. Chapter 12 on multiple endpoints explains how different choices of endpoint types lead to different multiplicity adjustment strategies, while Chapter 11 on the MCP-Mod approach is particularly useful for dose-finding. To assess efficacy in clinical trials with multiple doses and multiple endpoints, the reader can see the traditional approach in Chapter 2, the Graphical approach in Chapter 5, and the multivariate approach in Chapter 3. Personalized/precision medicine based on targeted therapies, already a reality, naturally leads to analysis of efficacy in subgroups. Chapter 13 draws attention to subtle logical issues in inferences on subgroups and their mixtures, with a principled solution that resolves these issues. This chapter has implication toward meeting the ICHE9R1 Estimands requirement. Besides the mere multiple testing methodology itself, the handbook also covers related topics like the statistical task of model selection in Chapter 7 or the estimation of the proportion of true null hypotheses (or, in other words, the signal prevalence) in Chapter 8. It also contains decision-theoretic considerations regarding the admissibility of multiple tests in Chapter 6. The issue of selected inference is addressed in Chapter 9. Comparison of responses can involve millions of voxels in medical imaging or SNPs in genome-wide association studies (GWAS). Chapter 14 and Chapter 15 provide state of the art methods for large scale simultaneous inference in these settings.