Higher Order Asymptotic Theory For Time Series Analysis

DOWNLOAD
Download Higher Order Asymptotic Theory For Time Series Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Higher Order Asymptotic Theory For Time Series Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Higher Order Asymptotic Theory For Time Series Analysis
DOWNLOAD
Author : Masanobu Taniguchi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Higher Order Asymptotic Theory For Time Series Analysis written by Masanobu Taniguchi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The initial basis of this book was a series of my research papers, that I listed in References. I have many people to thank for the book's existence. Regarding higher order asymptotic efficiency I thank Professors Kei Takeuchi and M. Akahira for their many comments. I used their concept of efficiency for time series analysis. During the summer of 1983, I had an opportunity to visit The Australian National University, and could elucidate the third-order asymptotics of some estimators. I express my sincere thanks to Professor E.J. Hannan for his warmest encouragement and kindness. Multivariate time series analysis seems an important topic. In 1986 I visited Center for Mul tivariate Analysis, University of Pittsburgh. I received a lot of impact from multivariate analysis, and applied many multivariate methods to the higher order asymptotic theory of vector time series. I am very grateful to the late Professor P.R. Krishnaiah for his cooperation and kindness. In Japan my research was mainly performed in Hiroshima University. There is a research group of statisticians who are interested in the asymptotic expansions in statistics. Throughout this book I often used the asymptotic expansion techniques. I thank all the members of this group, especially Professors Y. Fujikoshi and K. Maekawa foItheir helpful discussion. When I was a student of Osaka University I learned multivariate analysis and time series analysis from Professors Masashi Okamoto and T. Nagai, respectively. It is a pleasure to thank them for giving me much of research background.
Higher Order Asymptotic Theory For Time Series Analysis
DOWNLOAD
Author : Masanobu Taniguchi
language : en
Publisher:
Release Date : 1991
Higher Order Asymptotic Theory For Time Series Analysis written by Masanobu Taniguchi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Asymptotic distribution (Probability theory) categories.
Asymptotic Theory Of Statistical Inference For Time Series
DOWNLOAD
Author : Masanobu Taniguchi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Asymptotic Theory Of Statistical Inference For Time Series written by Masanobu Taniguchi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes.
Research Papers In Statistical Inference For Time Series And Related Models
DOWNLOAD
Author : Yan Liu
language : en
Publisher: Springer Nature
Release Date : 2023-05-31
Research Papers In Statistical Inference For Time Series And Related Models written by Yan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-31 with Mathematics categories.
This book compiles theoretical developments on statistical inference for time series and related models in honor of Masanobu Taniguchi's 70th birthday. It covers models such as long-range dependence models, nonlinear conditionally heteroscedastic time series, locally stationary processes, integer-valued time series, Lévy Processes, complex-valued time series, categorical time series, exclusive topic models, and copula models. Many cutting-edge methods such as empirical likelihood methods, quantile regression, portmanteau tests, rank-based inference, change-point detection, testing for the goodness-of-fit, higher-order asymptotic expansion, minimum contrast estimation, optimal transportation, and topological methods are proposed, considered, or applied to complex data based on the statistical inference for stochastic processes. The performances of these methods are illustrated by a variety of data analyses. This collection of original papers provides the reader with comprehensive and state-of-the-art theoretical works on time series and related models. It contains deep and profound treatments of the asymptotic theory of statistical inference. In addition, many specialized methodologies based on the asymptotic theory are presented in a simple way for a wide variety of statistical models. This Festschrift finds its core audiences in statistics, signal processing, and econometrics.
Modelling Longitudinal And Spatially Correlated Data
DOWNLOAD
Author : Timothy G. Gregoire
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Modelling Longitudinal And Spatially Correlated Data written by Timothy G. Gregoire and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.
Mixing
DOWNLOAD
Author : Paul Doukhan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Mixing written by Paul Doukhan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Mixing is concerned with the analysis of dependence between sigma-fields defined on the same underlying probability space. It provides an important tool of analysis for random fields, Markov processes, central limit theorems as well as being a topic of current research interest in its own right. The aim of this monograph is to provide a study of applications of dependence in probability and statistics. It is divided in two parts, the first covering the definitions and probabilistic properties of mixing theory. The second part describes mixing properties of classical processes and random fields as well as providing a detailed study of linear and Gaussian fields. Consequently, this book will provide statisticians dealing with problems involving weak dependence properties with a powerful tool.
Pivotal Measures In Statistical Experiments And Sufficiency
DOWNLOAD
Author : Sakutaro Yamada
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Pivotal Measures In Statistical Experiments And Sufficiency written by Sakutaro Yamada and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In the present work I want to show a mathematical study of the statistical notion of sufficiency mainly for undominated statistical experiments. The famous Burkholder's (1961) and Pitcher's(1957) examples motivated some researchers to develop new theory of sufficiency. Le Cam (1964) is probably the most excellent paper in this field of study. This note also belongs to the same area. Though it is more restrictive than Le Cam's paper(1964), a study which is connected more directly with the classical papers of Halmos and Savage(1949) , and Bahadur(1954) is shown. Namely I want to develop a study based on the notion of pivotal measure which was introduced by Halmos and Savage(1949) . It is great pleasure to have this opportunity to thank Professor H. Heyer and Professor H. Morimoto for their careful reading the manuscript and valuable comments on it. I am also thankful to Professor H. Luschgy and Professor D. Mussmann for thei r proposal of wr i ting "the note". I would like to dedicate this note to the memory of my father Eizo.
Lectures On Random Voronoi Tessellations
DOWNLOAD
Author : Jesper Moller
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Lectures On Random Voronoi Tessellations written by Jesper Moller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Tessellations are subdivisions of d-dimensional space into non-overlapping "cells". Voronoi tessellations are produced by first considering a set of points (known as nuclei) in d-space, and then defining cells as the set of points which are closest to each nuclei. A random Voronoi tessellation is produced by supposing that the location of each nuclei is determined by some random process. They provide models for many natural phenomena as diverse as the growth of crystals, the territories of animals, the development of regional market areas, and in subjects such as computational geometry and astrophysics. This volume provides an introduction to random Voronoi tessellations by presenting a survey of the main known results and the directions in which research is proceeding. Throughout the volume, mathematical and rigorous proofs are given making this essentially a self-contained account in which no background knowledge of the subject is assumed.
Logistic Regression With Missing Values In The Covariates
DOWNLOAD
Author : Werner Vach
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Logistic Regression With Missing Values In The Covariates written by Werner Vach and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In many areas of science a basic task is to assess the influence of several factors on a quantity of interest. If this quantity is binary logistic, regression models provide a powerful tool for this purpose. This monograph presents an account of the use of logistic regression in the case where missing values in the variables prevent the use of standard techniques. Such situations occur frequently across a wide range of statistical applications. The emphasis of this book is on methods related to the classical maximum likelihood principle. The author reviews the essentials of logistic regression and discusses the variety of mechanisms which might cause missing values while the rest of the book covers the methods which may be used to deal with missing values and their effectiveness. Researchers across a range of disciplines and graduate students in statistics and biostatistics will find this a readable account of this.
Latent Variable Modeling And Applications To Causality
DOWNLOAD
Author : Maia Berkane
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Latent Variable Modeling And Applications To Causality written by Maia Berkane and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.