Hybrid Metaheuristics For Image Analysis

DOWNLOAD
Download Hybrid Metaheuristics For Image Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hybrid Metaheuristics For Image Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hybrid Metaheuristics For Image Analysis
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: Springer
Release Date : 2018-07-30
Hybrid Metaheuristics For Image Analysis written by Siddhartha Bhattacharyya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-30 with Computers categories.
This book presents contributions in the field of computational intelligence for the purpose of image analysis. The chapters discuss how problems such as image segmentation, edge detection, face recognition, feature extraction, and image contrast enhancement can be solved using techniques such as genetic algorithms and particle swarm optimization. The contributions provide a multidimensional approach, and the book will be useful for researchers in computer science, electrical engineering, and information technology.
Applications Of Hybrid Metaheuristic Algorithms For Image Processing
DOWNLOAD
Author : Diego Oliva
language : en
Publisher: Springer
Release Date : 2020-03-28
Applications Of Hybrid Metaheuristic Algorithms For Image Processing written by Diego Oliva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-28 with Technology & Engineering categories.
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Applications Of Hybrid Metaheuristic Algorithms For Image Processing
DOWNLOAD
Author : Diego Oliva
language : en
Publisher: Springer Nature
Release Date : 2020-03-27
Applications Of Hybrid Metaheuristic Algorithms For Image Processing written by Diego Oliva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with Technology & Engineering categories.
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Recent Advances In Hybrid Metaheuristics For Data Clustering
DOWNLOAD
Author : Sourav De
language : en
Publisher: John Wiley & Sons
Release Date : 2020-08-24
Recent Advances In Hybrid Metaheuristics For Data Clustering written by Sourav De and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-24 with Computers categories.
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Quantum Inspired Meta Heuristics For Image Analysis
DOWNLOAD
Author : Sandip Dey
language : en
Publisher: John Wiley & Sons
Release Date : 2019-08-05
Quantum Inspired Meta Heuristics For Image Analysis written by Sandip Dey and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-05 with Technology & Engineering categories.
Introduces quantum inspired techniques for image analysis for pure and true gray scale/color images in a single/multi-objective environment This book will entice readers to design efficient meta-heuristics for image analysis in the quantum domain. It introduces them to the essence of quantum computing paradigm, its features, and properties, and elaborates on the fundamentals of different meta-heuristics and their application to image analysis. As a result, it will pave the way for designing and developing quantum computing inspired meta-heuristics to be applied to image analysis. Quantum Inspired Meta-heuristics for Image Analysis begins with a brief summary on image segmentation, quantum computing, and optimization. It also highlights a few relevant applications of the quantum based computing algorithms, meta-heuristics approach, and several thresholding algorithms in vogue. Next, it discusses a review of image analysis before moving on to an overview of six popular meta-heuristics and their algorithms and pseudo-codes. Subsequent chapters look at quantum inspired meta-heuristics for bi-level and gray scale multi-level image thresholding; quantum behaved meta-heuristics for true color multi-level image thresholding; and quantum inspired multi-objective algorithms for gray scale multi-level image thresholding. Each chapter concludes with a summary and sample questions. Provides in-depth analysis of quantum mechanical principles Offers comprehensive review of image analysis Analyzes different state-of-the-art image thresholding approaches Detailed current, popular standard meta-heuristics in use today Guides readers step by step in the build-up of quantum inspired meta-heuristics Includes a plethora of real life case studies and applications Features statistical test analysis of the performances of the quantum inspired meta-heuristics vis-à-vis their conventional counterparts Quantum Inspired Meta-heuristics for Image Analysis is an excellent source of information for anyone working with or learning quantum inspired meta-heuristics for image analysis.
Hybrid Metaheuristics Research And Applications
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: World Scientific
Release Date : 2018-09-28
Hybrid Metaheuristics Research And Applications written by Siddhartha Bhattacharyya and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-28 with Computers categories.
A metaheuristic is a higher-level procedure designed to select a partial search algorithm that may lead to a good solution to an optimization problem, especially with incomplete or imperfect information.This unique compendium focuses on the insights of hybrid metaheuristics. It illustrates the recent researches on evolving novel hybrid metaheuristic algorithms, and prominently highlights its diverse application areas. As such, the book helps readers to grasp the essentials of hybrid metaheuristics and to address real world problems.The must-have volume serves as an inspiring read for professionals, researchers, academics and graduate students in the fields of artificial intelligence, robotics and machine learning.Related Link(s)
Hybrid Metaheuristics
DOWNLOAD
Author : Maria José Blesa
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-27
Hybrid Metaheuristics written by Maria José Blesa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-27 with Computers categories.
This book constitutes the refereed proceedings of the 7th International Workshop on Hybrid Metaheuristics, HM 2010, held in Vienna, Austria, in October 2010. The 14 revised full papers presented were carefully reviewed and selected from 29 submissions.
Metaheuristics In Machine Learning Theory And Applications
DOWNLOAD
Author : Diego Oliva
language : en
Publisher: Springer Nature
Release Date : 2021-07-13
Metaheuristics In Machine Learning Theory And Applications written by Diego Oliva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-13 with Computers categories.
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
Hybrid Metaheuristics
DOWNLOAD
Author : Christian Blum
language : en
Publisher: Springer
Release Date : 2010-11-25
Hybrid Metaheuristics written by Christian Blum and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-25 with Technology & Engineering categories.
Optimization problems are of great importance across a broad range of fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. This book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments. The authors involved in this book are among the top researchers in their domain.
Recent Advances In Hybrid Metaheuristics For Data Clustering
DOWNLOAD
Author : Sourav De
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-02
Recent Advances In Hybrid Metaheuristics For Data Clustering written by Sourav De and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-02 with Computers categories.
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.