Hyperparameter Tuning For Machine And Deep Learning With R

DOWNLOAD
Download Hyperparameter Tuning For Machine And Deep Learning With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hyperparameter Tuning For Machine And Deep Learning With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hyperparameter Tuning For Machine And Deep Learning With R
DOWNLOAD
Author : Eva Bartz
language : en
Publisher: Springer Nature
Release Date : 2023-01-01
Hyperparameter Tuning For Machine And Deep Learning With R written by Eva Bartz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-01 with Computers categories.
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07
Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Deep Learning With R
DOWNLOAD
Author : Abhijit Ghatak
language : en
Publisher: Springer
Release Date : 2019-04-13
Deep Learning With R written by Abhijit Ghatak and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-13 with Computers categories.
Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning. The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks.
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Machine Learning Essentials
DOWNLOAD
Author : Alboukadel Kassambara
language : en
Publisher: STHDA
Release Date : 2018-03-10
Machine Learning Essentials written by Alboukadel Kassambara and has been published by STHDA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-10 with Computers categories.
Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.
Supervised Machine Learning For Text Analysis In R
DOWNLOAD
Author : Emil Hvitfeldt
language : en
Publisher: CRC Press
Release Date : 2021-11-03
Supervised Machine Learning For Text Analysis In R written by Emil Hvitfeldt and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-03 with Computers categories.
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.
Deep Learning With R Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2022-07-26
Deep Learning With R Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-26 with Computers categories.
Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks.
Proceedings Of International Conference On Advanced Computing And Systems
DOWNLOAD
Author : Maumita Chakraborty
language : en
Publisher: Springer Nature
Release Date : 2025-07-22
Proceedings Of International Conference On Advanced Computing And Systems written by Maumita Chakraborty and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-22 with Computers categories.
This book gathers selected research papers presented at AdComSys 2024 (International Conference on Advanced Computing and Systems), held during 26–27 June 2024 in Kolkata, India, in hybrid mode. This book presents a collection of state-of-the-art research work in cloud computing, parallel computing, green computing, evolutionary computing, human-centric computing, quantum computing, fuzzy systems, machine learning, deep learning, generative models, NLP, big data, IoT, 5G and beyond 5G, Industry 4.0, blockchain authentication, cryptocurrency, encryption techniques, cybernetics, and crypt analysis.
Into A Deeper Understanding Of Evolutionary Computing Exploration Exploitation And Parameter Control
DOWNLOAD
Author : Abdul Hanif Abdul Halim
language : en
Publisher: Springer Nature
Release Date : 2025-01-17
Into A Deeper Understanding Of Evolutionary Computing Exploration Exploitation And Parameter Control written by Abdul Hanif Abdul Halim and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
This book delves into fundamental and advanced strategies for enhancing evolutionary and metaheuristic algorithms, focusing on the crucial balance between exploration and exploitation in search mechanisms. As technological advancements increase optimization complexity, effectively managing this balance becomes essential for achieving optimal solutions within reasonable computational resources. The book's distinctive structure organizes content according to optimization stages and processes, offering a comprehensive discussion of various approaches supported by extensive literature. The authors note a scarcity of literature addressing the trade-offs between exploration and exploitation with contemporary references, making this work particularly valuable. It aims to deepen the reader's understanding of evolutionary computing, emphasizing exploration, exploitation, and parameter control. It is relevant not only to algorithm developers and the evolutionary computation community but also to students and researchers across scientific disciplines. The book is designed to be accessible to those without extensive algorithm development backgrounds, providing theoretical and practical insights into optimization methods.
Introduction To Machine Learning With R
DOWNLOAD
Author : Scott V. Burger
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-03-07
Introduction To Machine Learning With R written by Scott V. Burger and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-07 with Computers categories.
Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you’ll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R’s caret package