Insights In Reinforcement Learning

DOWNLOAD
Download Insights In Reinforcement Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Insights In Reinforcement Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Insights In Reinforcement Learning
DOWNLOAD
Author : H. P. van Hasselt
language : en
Publisher:
Release Date : 2011
Insights In Reinforcement Learning written by H. P. van Hasselt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.
Insights In Reinforcement Learning
DOWNLOAD
Author : Hado Philip van Hasselt
language : en
Publisher: Hado van Hasselt
Release Date : 2011
Insights In Reinforcement Learning written by Hado Philip van Hasselt and has been published by Hado van Hasselt this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.
Reinforcement Learning
DOWNLOAD
Author : Richard S. Sutton
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Reinforcement Learning written by Richard S. Sutton and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
Deep Reinforcement Learning
DOWNLOAD
Author : Mohit Sewak
language : en
Publisher: Springer
Release Date : 2019-06-27
Deep Reinforcement Learning written by Mohit Sewak and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-27 with Computers categories.
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.
Python Deeper Insights Into Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-08-31
Python Deeper Insights Into Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-31 with Computers categories.
Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.
The Machine Age Of Customer Insight
DOWNLOAD
Author : Martin Einhorn
language : en
Publisher: Emerald Group Publishing
Release Date : 2021-03-15
The Machine Age Of Customer Insight written by Martin Einhorn and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-15 with Business & Economics categories.
The Machine Age of Customer Insight demonstrates the impact of machine learning and data analytics, combining an academic state-of-the-art overview of machine learning with cases from well-known companies. These cases show the opportunities and challenges of the transformation process for business and for customer insights more specifically.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Reinforcement Learning
DOWNLOAD
Author : Phil Winder Ph.D.
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-11-06
Reinforcement Learning written by Phil Winder Ph.D. and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-06 with Computers categories.
Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcement and enable a machine to learn by itself. Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learn numerous algorithms, and benefit from dedicated chapters on deploying RL solutions to production. This is no cookbook; doesn't shy away from math and expects familiarity with ML. Learn what RL is and how the algorithms help solve problems Become grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learning Dive deep into a range of value and policy gradient methods Apply advanced RL solutions such as meta learning, hierarchical learning, multi-agent, and imitation learning Understand cutting-edge deep RL algorithms including Rainbow, PPO, TD3, SAC, and more Get practical examples through the accompanying website
Reinforcement Learning With Tensorflow
DOWNLOAD
Author : Sayon Dutta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-04-24
Reinforcement Learning With Tensorflow written by Sayon Dutta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-24 with Computers categories.
Leverage the power of the Reinforcement Learning techniques to develop self-learning systems using Tensorflow Key Features Learn reinforcement learning concepts and their implementation using TensorFlow Discover different problem-solving methods for Reinforcement Learning Apply reinforcement learning for autonomous driving cars, robobrokers, and more Book Description Reinforcement Learning (RL), allows you to develop smart, quick and self-learning systems in your business surroundings. It is an effective method to train your learning agents and solve a variety of problems in Artificial Intelligence—from games, self-driving cars and robots to enterprise applications that range from datacenter energy saving (cooling data centers) to smart warehousing solutions. The book covers the major advancements and successes achieved in deep reinforcement learning by synergizing deep neural network architectures with reinforcement learning. The book also introduces readers to the concept of Reinforcement Learning, its advantages and why it’s gaining so much popularity. The book also discusses on MDPs, Monte Carlo tree searches, dynamic programming such as policy and value iteration, temporal difference learning such as Q-learning and SARSA. You will use TensorFlow and OpenAI Gym to build simple neural network models that learn from their own actions. You will also see how reinforcement learning algorithms play a role in games, image processing and NLP. By the end of this book, you will have a firm understanding of what reinforcement learning is and how to put your knowledge to practical use by leveraging the power of TensorFlow and OpenAI Gym. What you will learn Implement state-of-the-art Reinforcement Learning algorithms from the basics Discover various techniques of Reinforcement Learning such as MDP, Q Learning and more Learn the applications of Reinforcement Learning in advertisement, image processing, and NLP Teach a Reinforcement Learning model to play a game using TensorFlow and the OpenAI gym Understand how Reinforcement Learning Applications are used in robotics Who this book is for If you want to get started with reinforcement learning using TensorFlow in the most practical way, this book will be a useful resource. The book assumes prior knowledge of machine learning and neural network programming concepts, as well as some understanding of the TensorFlow framework. No previous experience with Reinforcement Learning is required.