[PDF] Intelligent Data Analysis For Biomedical Applications - eBooks Review

Intelligent Data Analysis For Biomedical Applications


Intelligent Data Analysis For Biomedical Applications
DOWNLOAD

Download Intelligent Data Analysis For Biomedical Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intelligent Data Analysis For Biomedical Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Intelligent Data Analysis For Biomedical Applications


Intelligent Data Analysis For Biomedical Applications
DOWNLOAD
Author : D. Jude Hemanth
language : en
Publisher: Academic Press
Release Date : 2019-03-15

Intelligent Data Analysis For Biomedical Applications written by D. Jude Hemanth and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-15 with Computers categories.


Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems



Data Analytics In Biomedical Engineering And Healthcare


Data Analytics In Biomedical Engineering And Healthcare
DOWNLOAD
Author : Kun Chang Lee
language : en
Publisher: Academic Press
Release Date : 2020-10-18

Data Analytics In Biomedical Engineering And Healthcare written by Kun Chang Lee and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-18 with Science categories.


Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks



Intelligent Data Analytics For Bioinformatics And Biomedical Systems


Intelligent Data Analytics For Bioinformatics And Biomedical Systems
DOWNLOAD
Author : Neha Sharma
language : en
Publisher: John Wiley & Sons
Release Date : 2024-11-20

Intelligent Data Analytics For Bioinformatics And Biomedical Systems written by Neha Sharma and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-20 with Medical categories.


The book analyzes the combination of intelligent data analytics with the intricacies of biological data that has become a crucial factor for innovation and growth in the fast-changing field of bioinformatics and biomedical systems. Intelligent Data Analytics for Bioinformatics and Biomedical Systems delves into the transformative nature of data analytics for bioinformatics and biomedical research. It offers a thorough examination of advanced techniques, methodologies, and applications that utilize intelligence to improve results in the healthcare sector. With the exponential growth of data in these domains, the book explores how computational intelligence and advanced analytic techniques can be harnessed to extract insights, drive informed decisions, and unlock hidden patterns from vast datasets. From genomic analysis to disease diagnostics and personalized medicine, the book aims to showcase intelligent approaches that enable researchers, clinicians, and data scientists to unravel complex biological processes and make significant strides in understanding human health and diseases. This book is divided into three sections, each focusing on computational intelligence and data sets in biomedical systems. The first section discusses the fundamental concepts of computational intelligence and big data in the context of bioinformatics. This section emphasizes data mining, pattern recognition, and knowledge discovery for bioinformatics applications. The second part talks about computational intelligence and big data in biomedical systems. Based on how these advanced techniques are utilized in the system, this section discusses how personalized medicine and precision healthcare enable treatment based on individual data and genetic profiles. The last section investigates the challenges and future directions of computational intelligence and big data in bioinformatics and biomedical systems. This section concludes with discussions on the potential impact of computational intelligence on addressing global healthcare challenges. Audience Intelligent Data Analytics for Bioinformatics and Biomedical Systems is primarily targeted to professionals and researchers in bioinformatics, genetics, molecular biology, biomedical engineering, and healthcare. The book will also suit academicians, students, and professionals working in pharmaceuticals and interpreting biomedical data.



Intelligent Data Analytics For Bioinformatics And Biomedical Systems


Intelligent Data Analytics For Bioinformatics And Biomedical Systems
DOWNLOAD
Author : Neha Sharma
language : en
Publisher: John Wiley & Sons
Release Date : 2024-10-11

Intelligent Data Analytics For Bioinformatics And Biomedical Systems written by Neha Sharma and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-11 with Medical categories.


The book analyzes the combination of intelligent data analytics with the intricacies of biological data that has become a crucial factor for innovation and growth in the fast-changing field of bioinformatics and biomedical systems. Intelligent Data Analytics for Bioinformatics and Biomedical Systems delves into the transformative nature of data analytics for bioinformatics and biomedical research. It offers a thorough examination of advanced techniques, methodologies, and applications that utilize intelligence to improve results in the healthcare sector. With the exponential growth of data in these domains, the book explores how computational intelligence and advanced analytic techniques can be harnessed to extract insights, drive informed decisions, and unlock hidden patterns from vast datasets. From genomic analysis to disease diagnostics and personalized medicine, the book aims to showcase intelligent approaches that enable researchers, clinicians, and data scientists to unravel complex biological processes and make significant strides in understanding human health and diseases. This book is divided into three sections, each focusing on computational intelligence and data sets in biomedical systems. The first section discusses the fundamental concepts of computational intelligence and big data in the context of bioinformatics. This section emphasizes data mining, pattern recognition, and knowledge discovery for bioinformatics applications. The second part talks about computational intelligence and big data in biomedical systems. Based on how these advanced techniques are utilized in the system, this section discusses how personalized medicine and precision healthcare enable treatment based on individual data and genetic profiles. The last section investigates the challenges and future directions of computational intelligence and big data in bioinformatics and biomedical systems. This section concludes with discussions on the potential impact of computational intelligence on addressing global healthcare challenges. Audience Intelligent Data Analytics for Bioinformatics and Biomedical Systems is primarily targeted to professionals and researchers in bioinformatics, genetics, molecular biology, biomedical engineering, and healthcare. The book will also suit academicians, students, and professionals working in pharmaceuticals and interpreting biomedical data.



Deep Learning For Biomedical Data Analysis


Deep Learning For Biomedical Data Analysis
DOWNLOAD
Author : Mourad Elloumi
language : en
Publisher: Springer Nature
Release Date : 2021-07-13

Deep Learning For Biomedical Data Analysis written by Mourad Elloumi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-13 with Medical categories.


This book is the first overview on Deep Learning (DL) for biomedical data analysis. It surveys the most recent techniques and approaches in this field, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on these techniques, approaches and the related problems without overcrowding the reader's head. It presents the results of the latest investigations in the field of DL for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine fundamental theory of Artificial Intelligence (AI), Machine Learning (ML) and DL with practical applications in Biology and Medicine. Certainly, the list of topics covered in this book is not exhaustive but these topics will shed light on the implications of the presented techniques and approaches on other topics in biomedical data analysis. The book finds a balance between theoretical and practical coverage of a wide range of issues in the field of biomedical data analysis, thanks to DL. The few published books on DL for biomedical data analysis either focus on specific topics or lack technical depth. The chapters presented in this book were selected for quality and relevance. The book also presents experiments that provide qualitative and quantitative overviews in the field of biomedical data analysis. The reader will require some familiarity with AI, ML and DL and will learn about techniques and approaches that deal with the most important and/or the newest topics encountered in the field of DL for biomedical data analysis. He/she will discover both the fundamentals behind DL techniques and approaches, and their applications on biomedical data. This book can also serve as a reference book for graduate courses in Bioinformatics, AI, ML and DL. The book aims not only at professional researchers and practitioners but also graduate students, senior undergraduate students and young researchers. This book will certainly show the way to new techniques and approaches to make new discoveries.



Intelligent Data Analysis


Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2007-06-07

Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-07 with Computers categories.


This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.



Intelligent Data Analysis And Applications


Intelligent Data Analysis And Applications
DOWNLOAD
Author : Ajith Abraham
language : en
Publisher: Springer
Release Date : 2015-07-14

Intelligent Data Analysis And Applications written by Ajith Abraham and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-14 with Technology & Engineering categories.


This volume of Advances in Intelligent Systems and Computing contains accepted papers presented in the main track of ECC 2015, the Second Euro-China Conference on Intelligent Data Analysis and Applications. The aim of ECC is to provide an internationally respected forum for scientific research in the broad area of intelligent data analysis, computational intelligence, signal processing, and all associated applications of AIs. The second edition of ECC was organized jointly by VSB - Technical University of Ostrava, Czech Republic, and Fujian University of Technology, Fuzhou, China. The conference, organized under the patronage of Mr. Miroslav Novak, President of the Moravian-Silesian Region, took place in late June and early July 2015 in the Campus of the VSB - Technical University of Ostrava, Czech Republic.



Handbook Of Data Science Approaches For Biomedical Engineering


Handbook Of Data Science Approaches For Biomedical Engineering
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Academic Press
Release Date : 2019-11-13

Handbook Of Data Science Approaches For Biomedical Engineering written by Valentina Emilia Balas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Science categories.


Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more



Intelligent Data Analysis


Intelligent Data Analysis
DOWNLOAD
Author : Deepak Gupta
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-27

Intelligent Data Analysis written by Deepak Gupta and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-27 with Technology & Engineering categories.


This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.



Handbook Of Computational Intelligence In Biomedical Engineering And Healthcare


Handbook Of Computational Intelligence In Biomedical Engineering And Healthcare
DOWNLOAD
Author : Janmenjoy Nayak
language : en
Publisher: Academic Press
Release Date : 2021-04-08

Handbook Of Computational Intelligence In Biomedical Engineering And Healthcare written by Janmenjoy Nayak and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Science categories.


Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives