Interpretable Ai Techniques For Making Machine Learning Models Transparent

DOWNLOAD
Download Interpretable Ai Techniques For Making Machine Learning Models Transparent PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interpretable Ai Techniques For Making Machine Learning Models Transparent book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Interpretable Ai Techniques For Making Machine Learning Models Transparent
DOWNLOAD
Author : Dr. Aadam Quraishi MD
language : en
Publisher: Xoffencerpublication
Release Date : 2024-01-10
Interpretable Ai Techniques For Making Machine Learning Models Transparent written by Dr. Aadam Quraishi MD and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-10 with Computers categories.
The capacity to understand and have trust in the results generated by models is one of the distinguishing characteristics of high-quality scientific research. Because of the significant impact that models and the outcomes of modeling will have on both our work and our personal lives, it is imperative that we have a solid understanding of models and have faith in the results of modeling. This is something that should be kept in mind by analysts, engineers, physicians, researchers, and scientists in general. Many years ago, picking a model that was transparent to human practitioners or customers often meant selecting basic data sources and simpler model forms such as linear models, single decision trees, or business rule systems. This was the case since selecting a model that was transparent required less processing power. This was the situation as a result of the fact that picking a model that was transparent to human practitioners or customers in general entailed picking a model. Even though these more easy approaches were typically the best option, and even though they continue to be the best option today, they are subject to failure in real-world circumstances in which the phenomena being replicated are nonlinear, uncommon or weak, or very distinctive to particular individuals. Despite the fact that they continue to be the best option, they are sensitive to failure in these kinds of scenarios. The conventional trade-off that existed between the precision of prediction models and the simplicity with which they could be interpreted has been abolished; nevertheless, it is likely that this trade-off was never truly required in the first place. There are technologies that are now accessible that can be used to develop modeling systems that are accurate and sophisticated, based on heterogeneous data and techniques for machine learning, and that can also aid human comprehension of and
Interpretable Ai
DOWNLOAD
Author : Ajay Thampi
language : en
Publisher: Simon and Schuster
Release Date : 2022-07-05
Interpretable Ai written by Ajay Thampi and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-05 with Computers categories.
AI doesn't have to be a black box. These practical techniques help shine a light on your model's mysterious inner workings. Make your AI more transparent, and you'll improve trust in your results, combat data leakage and bias, and ensure compliance with legal requirements. Interpretable AI opens up the black box of your AI models. It teaches cutting-edge techniques and best practices that can make even complex AI systems interpretable. Each method is easy to implement with just Python and open source libraries. You'll learn to identify when you can utilize models that are inherently transparent, and how to mitigate opacity when your problem demands the power of a hard-to-interpret deep learning model.
Interpretable Machine Learning With Python
DOWNLOAD
Author : Serg Masís
language : en
Publisher:
Release Date : 2021-03-26
Interpretable Machine Learning With Python written by Serg Masís and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-26 with categories.
Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models Key Features: Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book Description: Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models. The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What You Will Learn: Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.
Explainable Interpretable And Transparent Ai Systems
DOWNLOAD
Author : B. K. Tripathy
language : en
Publisher: CRC Press
Release Date : 2024-08-23
Explainable Interpretable And Transparent Ai Systems written by B. K. Tripathy and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-23 with Technology & Engineering categories.
Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.
Explainable Ai Xai Making Machine Learning Models Interpretable And Trustworthy Cloud Computing
DOWNLOAD
Author : Amit Vyas
language : en
Publisher: Xoffencer international book publication house
Release Date : 2024-05-30
Explainable Ai Xai Making Machine Learning Models Interpretable And Trustworthy Cloud Computing written by Amit Vyas and has been published by Xoffencer international book publication house this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-30 with Computers categories.
Both explainable artificial intelligence (XAI) and cloud computing are vital components because they both play a significant part in the creation of the landscape of artificial intelligence (AI) and computing infrastructure. XAI and cloud computing are two of the most important pillars in the world of current technology. The purpose of this introduction is to provide an overview of the fundamental concepts behind both Explainable AI and cloud computing. In this section, we will study the relevance of these notions, as well as their applications and the synergies that they offer. A solution that satisfies the critical requirement for interpretability and transparency in artificial intelligence systems is referred to as explainable artificial intelligence, or XAI for short. Understanding the method by which artificial intelligence algorithms arrive at conclusions is of the highest significance, particularly in sensitive industries such as healthcare, finance, and law. This is because the algorithms are growing more intricate and prevalent, and it is becoming increasingly important to understand how they arrive at their results. XAI techniques are intended to give insights into the inner workings and reasoning processes of artificial intelligence models, with the purpose of demystifying the "black box" nature of these models. XAI approaches are aimed to deliver these insights. In addition to allowing stakeholders to detect biases or mistakes and ensure compliance with regulations, increasing the interpretability of artificial intelligence systems enables stakeholders to have a greater degree of trust in these systems. The provisioning, administration, and distribution of computer resources are all fundamentally transformed by cloud computing, which is regarded to be a breakthrough technology. Cloud computing is also known as utility computing. The term "cloud computing" refers to the practice of storing, managing, and processing data through the utilization of a network of distant servers that are located on the Internet. This is in contrast to the conventional method of computing, which is dependent on the infrastructure and servers located locally. This technology offers organizations unrivaled scalability, flexibility, and cost-efficiency, making it possible for them to use computer resources on demand without the trouble of managing physical infrastructure.
Machine Intelligence Applications In Cyber Risk Management
DOWNLOAD
Author : Almaiah, Mohammed Amin
language : en
Publisher: IGI Global
Release Date : 2024-11-29
Machine Intelligence Applications In Cyber Risk Management written by Almaiah, Mohammed Amin and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-29 with Computers categories.
In an era where cyber threats are increasingly sophisticated and persistent, the intersection of machine intelligence and cyber-risk management represents a pivotal frontier in the defense against malicious actors. The rapid advancements of artificial intelligence (AI) and machine learning (ML) technologies offer unprecedented capabilities for identifying, analyzing, and mitigating cyber risks. These technologies not only improve the speed and accuracy of identifying potential threats but also enable proactive and adaptive security measures. Machine Intelligence Applications in Cyber-Risk Management explores the diverse applications of machine intelligence in cyber-risk management, providing a comprehensive overview of how AI and ML algorithms are utilized for automated incident response, threat intelligence gathering, and dynamic security postures. It addresses the pressing need for innovative solutions to combat cyber threats and offer insights into the future of cybersecurity, where machine intelligence plays a crucial role in creating resilient and adaptive defense mechanisms. Covering topics such as anomy detection algorithms, malware detection, and wireless sensor networks (WSNs), this book is an excellent resource for cybersecurity professionals, researchers, academicians, security analysts, threat intelligence experts, IT managers, and more.
Explainable Ai In Healthcare Imaging For Medical Diagnoses
DOWNLOAD
Author : Tanzila Saba
language : en
Publisher: Elsevier
Release Date : 2025-03-29
Explainable Ai In Healthcare Imaging For Medical Diagnoses written by Tanzila Saba and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-29 with Computers categories.
In an era where Artificial Intelligence (AI) is revolutionizing healthcare, Explainable AI in Healthcare Imaging for Precision Medicine addresses the critical need for transparency, trust, and accountability in AI-driven medical technologies. As AI becomes an integral part of clinical decision-making, especially in imaging and precision medicine, the question of how AI reaches its conclusions grows increasingly significant. This book explores how Explainable AI (XAI) is transforming healthcare by making AI systems more interpretable, reliable, and transparent, empowering clinicians and enhancing patient outcomes.Through a comprehensive examination of the latest research, real-world case studies, and expert insights, this book delves into the application of XAI in medical imaging, disease diagnosis, treatment planning, and personalized care. It discusses the technical methodologies behind XAI, the challenges and opportunities of its integration into healthcare, and the ethical and regulatory considerations that will shape the future of AI-assisted medical decisions.Key areas of focus include the role of XAI in improving diagnostic accuracy in fields such as radiology, pathology, and genomics and its potential to enhance collaboration between AI systems, healthcare professionals, and patients. The book also highlights practical applications of XAI in personalized medicine, showing how explainable models help tailor treatments to individual patients, and discusses how XAI can contribute to reducing bias and improving fairness in medical decision-making.Written by leading experts in AI, healthcare, and precision medicine, Explain[S3G1] able AI in Healthcare Imaging for Precision Medicine is an essential resource for researchers, clinicians, students, and policymakers. Whether you are looking to stay at the forefront of AI innovations in healthcare or seeking to understand how explainability can build trust in AI systems, this book provides the insights and knowledge needed to navigate the evolving landscape of AI in medicine. It invites readers to explore how XAI can revolutionize healthcare and precision medicine, shaping a future where AI is both powerful and trustworthy. - Provides step-by-step procedures to build a digital human model - Assists in validating predicted human motion using simulations and experiments - Offers formulation optimization features for dynamic human motion prediction
Deep Learning
DOWNLOAD
Author : Manish Soni
language : en
Publisher:
Release Date : 2024-11-13
Deep Learning written by Manish Soni and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-13 with Computers categories.
Welcome to "Deep Learning: A Comprehensive Guide," a book meticulously designed to cater to the needs of learners at various stages of their journey into the fascinating world of deep learning. Whether you are a beginner embarking on your first exploration into artificial intelligence or a seasoned professional looking to deepen your expertise, this book aims to be your trusted companion. Deep learning, a subset of machine learning, has revolutionized the field of artificial intelligence, enabling advancements that were once thought to be the stuff of science fiction. From autonomous vehicles to sophisticated natural language processing systems, deep learning has become the backbone of many cutting-edge technologies. Understanding and mastering deep learning is not just a desirable skill but a necessity for anyone looking to thrive in the modern tech landscape. What This Book Offers This book is not just a theoretical exposition but a practical guide designed to provide you with a holistic learning experience. Here's a glimpse of what you can expect: Structured Content: Starts with neural network basics and advances to topics like convolutional, recurrent, and generative adversarial networks. Each chapter builds on the previous, ensuring a comprehensive learning journey. Online Practice Questions: Each chapter includes practice questions from basic to advanced levels to test and reinforce your understanding. Videos: Instructional videos complement the book's content, offering step-by-step explanations and real-life applications. Exercises and Projects: Includes exercises and hands-on projects that simulate real-world problems, providing practical experience. Lab Activities: Features lab activities using frameworks like TensorFlow and PyTorch for hands-on experimentation with deep learning models. Case Studies: Illustrates the application of deep learning in industries such as healthcare, finance, and entertainment, highlighting its transformative potential. Comprehensive Coverage: Covers a broad spectrum of topics, from theoretical foundations to practical implementations, latest advancements, ethical considerations, and future trends. Who Should Use This Book? This book is designed for: Students and Academics: Pursuing studies in computer science, data science, or related fields. Industry Professionals: Enhancing skills or transitioning into roles involving deep learning. Embarking on the journey to master deep learning is both challenging and rewarding. This book is designed to make that journey as smooth and enlightening as possible. We hope that the combination of theoretical knowledge, practical exercises, projects, and real-world applications will equip you with the skills and confidence needed to excel in the field of deep learning.
Advances In Emerging Computing Technologies
DOWNLOAD
Author : Shaliesh S
language : en
Publisher: Co-Text Publishers
Release Date : 2023-08-19
Advances In Emerging Computing Technologies written by Shaliesh S and has been published by Co-Text Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-19 with Education categories.
PUBLISHED BY CO-TEXT PUBLISHERS IN ASSOCIATION WITH DEPARTMENT OF COMPUTER SCIENCE SACRED HEART COLLEGE (AUTONOMOUS) THEVARA, KOCHI-682013, KERALA, INDIA