[PDF] Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs - eBooks Review

Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs


Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs
DOWNLOAD

Download Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs


Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs
DOWNLOAD
Author : Said Broumi
language : en
Publisher: Infinite Study
Release Date :

Introduction Of Some New Results On Intervalvalued Neutrosophic Graphs written by Said Broumi and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.




Collected Papers Volume Xiv


Collected Papers Volume Xiv
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-11-01

Collected Papers Volume Xiv written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-01 with Mathematics categories.


This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.



Dombi Interval Valued Neutrosophic Graph And Its Role In Traffic Control Management


Dombi Interval Valued Neutrosophic Graph And Its Role In Traffic Control Management
DOWNLOAD
Author : D. Nagarajan
language : en
Publisher: Infinite Study
Release Date :

Dombi Interval Valued Neutrosophic Graph And Its Role In Traffic Control Management written by D. Nagarajan and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


An advantage of dealing indeterminacy is possible only with Neutrosophic Sets. Graph theory plays a vital role in the field of networking. If uncertainty exist in the set of vertices and edge then that can be dealt by fuzzy graphs in any application and using Neutrosophic Graph uncertainty of the problems can be completely dealt with the concept of indeterminacy. In this paper, Dombi Interval Valued Neutrosophic Graph has been proposed and Cartesian product and composition of the proposed graphs have been derived.



Neutrosophic Sets And Systems Vol 60 2023


Neutrosophic Sets And Systems Vol 60 2023
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2023-10-15

Neutrosophic Sets And Systems Vol 60 2023 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-15 with Mathematics categories.


“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well.



Collected Papers Volume Viii


Collected Papers Volume Viii
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-04-01

Collected Papers Volume Viii written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-01 with Mathematics categories.


This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.



Some Types Of Hyperneutrosophic Set 1 Bipolar Pythagorean Double Valued Interval Valued Set


Some Types Of Hyperneutrosophic Set 1 Bipolar Pythagorean Double Valued Interval Valued Set
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-01

Some Types Of Hyperneutrosophic Set 1 Bipolar Pythagorean Double Valued Interval Valued Set written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-01 with Mathematics categories.


The Neutrosophic Set is a mathematical framework designed to manage uncertainty, characterized by three membership functions: truth (T), indeterminacy (I), and falsity (F). In recent years, extensions such as the Hyperneutrosophic Set and SuperHyperneutrosophic Set have been introduced to address more complex scenarios. This paper proposes new concepts by extending Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets using the frameworks of Hyperneutrosophic and SuperHyperneutrosophic Sets. Additionally, a brief analysis of these extended concepts is presented.



A Study Of Regular And Irregular Neutrosophic Graphs With Real Life Applications


A Study Of Regular And Irregular Neutrosophic Graphs With Real Life Applications
DOWNLOAD
Author : Liangsong Huang
language : en
Publisher: Infinite Study
Release Date :

A Study Of Regular And Irregular Neutrosophic Graphs With Real Life Applications written by Liangsong Huang and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results.



Blockchain Single And Interval Valued Neutrosophic Graphs


Blockchain Single And Interval Valued Neutrosophic Graphs
DOWNLOAD
Author : D. Nagarajan
language : en
Publisher: Infinite Study
Release Date :

Blockchain Single And Interval Valued Neutrosophic Graphs written by D. Nagarajan and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Business & Economics categories.


Blockchain Technology (BCT) is a growing and reliable technology in various fields such as developing business deals, economic environments, social and politics as well. Without having a trusted central party this technology, gives the guarantee for safe and reliable transactions using Bitcoin or Ethereum. In this paper BCT has been considered using Bitcoins. Also Blockchain Single and Interval Valued Neutrosophic Graphs have been proposed and applied in transaction of Bitcoins. Also degree, total degree, minimum and maximum degree have been found for the proposed graphs. Further, comparative analysis is done with advantages and limitations of different types of Blockchain graphs.



Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond


Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-15

Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Mathematics categories.


This book represents the fourth volume in the series Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of the HyperUncertain Set, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent complexity of real-world uncertainties. At the heart of this series lies combinatorics and set theory—cornerstones of mathematics that address the study of counting, arrangements, and the relationships between collections under defined rules. Traditionally, combinatorics has excelled in solving problems involving uncertainty, while advancements in set theory have expanded its scope to include powerful constructs like fuzzy and neutrosophic sets. These advanced sets bring new dimensions to uncertainty modeling by capturing not just binary truth but also indeterminacy and falsity. In this fourth volume, the integration of set theory with graph theory takes center stage, culminating in "graphized" structures such as hypergraphs and superhypergraphs. These structures, paired with innovations like Neutrosophic Oversets, Undersets, Offsets, and the Nonstandard Real Set, extend the boundaries of mathematical abstraction. This fusion of combinatorics, graph theory, and uncertain set theory creates a rich foundation for addressing the multidimensional and hierarchical uncertainties prevalent in both theoretical and applied domains. The book is structured into thirteen chapters, each contributing unique perspectives and advancements in the realm of HyperUncertain Sets and their related frameworks. The first chapter (Advancing Traditional Set Theory with Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets) explores the evolution of classical set theory to better address the complexity and ambiguity of real-world phenomena. By introducing hierarchical structures like hyperstructures and superhyperstructures—created through iterative applications of power sets—it lays the groundwork for more abstract and adaptable mathematical tools. The focus is on extending three foundational frameworks: Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets into their hyperforms: Hyperfuzzy Sets, Hyperneutrosophic Sets, and Hyperplithogenic Sets. These advanced concepts are applied across diverse fields such as statistics, clustering, evolutionary theory, topology, decision-making, probability, and language theory. The goal is to provide a robust platform for future research in this expanding area of study. The second chapter (Applications and Mathematical Properties of Hyperneutrosophic and SuperHyperneutrosophic Sets) extends the work on Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets by delving into their advanced applications and mathematical foundations. Building on prior research, it specifically examines Hyperneutrosophic and SuperHyperneutrosophic Sets, exploring their integration into: Neutrosophic Logic, Cognitive Maps,Graph Neural Networks, Classifiers, and Triplet Groups. The chapter also investigates their mathematical properties and applicability in addressing uncertainties and complexities inherent in various domains. These insights aim to inspire innovative uses of hypergeneralized sets in modern theoretical and applied research. The third chapter (New Extensions of Hyperneutrosophic Sets – Bipolar, Pythagorean, Double-Valued, and Interval-Valued Sets) studies advanced variations of Neutrosophic Sets, a mathematical framework defined by three membership functions: truth (T), indeterminacy (I), and falsity (F). By leveraging the concepts of Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets. These extensions address increasingly complex scenarios, and a brief analysis is provided to explore their potential applications and mathematical underpinnings. Building on prior research, the fourth chapter (Hyperneutrosophic Extensions of Complex, Single-Valued Triangular, Fermatean, and Linguistic Sets) expands on Neutrosophic Set theory by incorporating recent advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets. The study focuses on extending: Complex Neutrosophic Sets, Single-Valued Triangular Neutrosophic Sets, Fermatean Neutrosophic Sets, and Linguistic Neutrosophic Sets. The analysis highlights the mathematical structures of these hyperextensions and explores their connections with existing set-theoretic concepts, offering new insights into managing uncertainty in multidimensional challenges. The fifth chapter (Advanced Extensions of Hyperneutrosophic Sets – Dynamic, Quadripartitioned, Pentapartitioned, Heptapartitioned, and m-Polar) delves deeper into the evolution of Neutrosophic Sets by exploring advanced frameworks designed for even more intricate applications. New extensions include: Dynamic Neutrosophic Sets, Quadripartitioned Neutrosophic Sets, Pentapartitioned Neutrosophic Sets, Heptapartitioned Neutrosophic Sets, and m-Polar Neutrosophic Sets. These developments build upon foundational research and aim to provide robust tools for addressing multidimensional and highly nuanced problems. The sixth chapter (Advanced Extensions of Hyperneutrosophic Sets – Cubic, Trapezoidal, q-Rung Orthopair, Overset, Underset, and Offset) builds upon the Neutrosophic framework, which employs truth (T), indeterminacy (I), and falsity (F) to address uncertainty. Leveraging advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Cubic Neutrosophic Sets, Trapezoidal Neutrosophic Sets, q-Rung Orthopair Neutrosophic Sets, Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets. The chapter provides a brief analysis of these new set types, exploring their properties and potential applications in solving multidimensional problems. The seventh chapter (Specialized Classes of Hyperneutrosophic Sets – Support, Paraconsistent, and Faillibilist Sets) delves into unique classes of Neutrosophic Sets extended through Hyperneutrosophic and SuperHyperneutrosophic frameworks to tackle advanced theoretical challenges. The study introduces and extends: Support Neutrosophic Sets, Neutrosophic Intuitionistic Sets, Neutrosophic Paraconsistent Sets, Neutrosophic Faillibilist Sets, Neutrosophic Paradoxist and Pseudo-Paradoxist Sets, Neutrosophic Tautological and Nihilist Sets, Neutrosophic Dialetheist Sets, and Neutrosophic Trivialist Sets. These extensions address highly nuanced aspects of uncertainty, further advancing the theoretical foundation of Neutrosophic mathematics. The eight chapter (MultiNeutrosophic Sets and Refined Neutrosophic Sets) focuses on two advanced Neutrosophic frameworks: MultiNeutrosophic Sets, and Refined Neutrosophic Sets. Using Hyperneutrosophic and nn-SuperHyperneutrosophic Sets, these extensions are analyzed in detail, highlighting their adaptability to multidimensional and complex scenarios. Examples and mathematical properties are provided to showcase their practical relevance and theoretical depth. The ninth chapter (Advanced Hyperneutrosophic Set Types – Type-m, Nonstationary, Subset-Valued, and Complex Refined) explores extensions of the Neutrosophic framework, focusing on: Type-m Neutrosophic Sets, Nonstationary Neutrosophic Sets, Subset-Valued Neutrosophic Sets, and Complex Refined Neutrosophic Sets. These extensions utilize the Hyperneutrosophic and SuperHyperneutrosophic frameworks to address advanced challenges in uncertainty management, expanding their mathematical scope and practical applications. The tenth chapter (Hyperfuzzy Hypersoft Sets and Hyperneutrosophic Hypersoft Sets) integrates the principles of Fuzzy, Neutrosophic, and Soft Sets with hyperstructures to introduce: Hyperfuzzy Hypersoft Sets, and Hyperneutrosophic Hypersoft Sets. These frameworks are designed to manage complex uncertainty through hierarchical structures based on power sets, with detailed analysis of their properties and theoretical potential. The eleventh chapter (A Review of SuperFuzzy, SuperNeutrosophic, and SuperPlithogenic Sets) revisits and extends the study of advanced set concepts such as: SuperFuzzy Sets, Super-Intuitionistic Fuzzy Sets,Super-Neutrosophic Sets, and SuperPlithogenic Sets, including their specialized variants like quadripartitioned, pentapartitioned, and heptapartitioned forms. The work serves as a consolidation of existing studies while highlighting potential directions for future research in hierarchical uncertainty modeling. Focusing on decision-making under uncertainty, the tweve chapter (Advanced SuperHypersoft and TreeSoft Sets) introduces six novel concepts: SuperHypersoft Rough Sets,SuperHypersoft Expert Sets, Bipolar SuperHypersoft Sets, TreeSoft Rough Sets, TreeSoft Expert Sets, and Bipolar TreeSoft Sets. Definitions, properties, and potential applications of these frameworks are explored to enhance the flexibility of soft set-based models. The final chapter (Hierarchical Uncertainty in Fuzzy, Neutrosophic, and Plithogenic Sets) provides a comprehensive survey of hierarchical uncertainty frameworks, with a focus on Plithogenic Sets and their advanced extensions: Hyperplithogenic Sets, SuperHyperplithogenic Sets. It examines relationships with other major concepts such as Intuitionistic Fuzzy Sets, Vague Sets, Picture Fuzzy Sets, Hesitant Fuzzy Sets, and multi-partitioned Neutrosophic Sets, consolidating their theoretical interconnections for modeling complex systems. This volume not only reflects the dynamic interplay between theoretical rigor and practical application but also serves as a beacon for future research in uncertainty modeling, offering advanced tools to tackle the intricacies of modern challenges.



Interval Valued Neutrosophic Competition Graphs


Interval Valued Neutrosophic Competition Graphs
DOWNLOAD
Author : Muhammad Akram
language : en
Publisher: Infinite Study
Release Date :

Interval Valued Neutrosophic Competition Graphs written by Muhammad Akram and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.


We first introduce the concept of interval-valued neutrosophic competition graphs. We then discuss certain types, including kcompetition interval-valued neutrosophic graphs, p-competition intervalvalued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs. Moreover, we present the concept of m-step intervalvalued neutrosophic neighbourhood graphs.