[PDF] Introduction To Clustering Large And High Dimensional Data - eBooks Review

Introduction To Clustering Large And High Dimensional Data


Introduction To Clustering Large And High Dimensional Data
DOWNLOAD

Download Introduction To Clustering Large And High Dimensional Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Clustering Large And High Dimensional Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Clustering Large And High Dimensional Data


Introduction To Clustering Large And High Dimensional Data
DOWNLOAD
Author : Jacob Kogan
language : en
Publisher: Cambridge University Press
Release Date : 2007

Introduction To Clustering Large And High Dimensional Data written by Jacob Kogan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


Focuses on a few of the important clustering algorithms in the context of information retrieval.



Understanding High Dimensional Spaces


Understanding High Dimensional Spaces
DOWNLOAD
Author : David B. Skillicorn
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-27

Understanding High Dimensional Spaces written by David B. Skillicorn and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-27 with Business & Economics categories.


This book proposes new ways of thinking about high-dimensional spaces using two models: the skeleton that relates the clusters to one another, and the boundaries in empty space that provide new perspectives on outliers and on outlying regions.



Introduction To Clustering Large And High Dimensional Data


Introduction To Clustering Large And High Dimensional Data
DOWNLOAD
Author : Jacob Kogan
language : en
Publisher: Cambridge University Press
Release Date : 2006-11-13

Introduction To Clustering Large And High Dimensional Data written by Jacob Kogan and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-13 with Computers categories.


There is a growing need for a more automated system of partitioning data sets into groups, or clusters. For example, digital libraries and the World Wide Web continue to grow exponentially, the ability to find useful information increasingly depends on the indexing infrastructure or search engine. Clustering techniques can be used to discover natural groups in data sets and to identify abstract structures that might reside there, without having any background knowledge of the characteristics of the data. Clustering has been used in a variety of areas, including computer vision, VLSI design, data mining, bio-informatics (gene expression analysis), and information retrieval, to name just a few. This book focuses on a few of the most important clustering algorithms, providing a detailed account of these major models in an information retrieval context. The beginning chapters introduce the classic algorithms in detail, while the later chapters describe clustering through divergences and show recent research for more advanced audiences.



Data Clustering


Data Clustering
DOWNLOAD
Author : Guojun Gan
language : en
Publisher: SIAM
Release Date : 2007-01-01

Data Clustering written by Guojun Gan and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB programming languages.



Statistics For High Dimensional Data


Statistics For High Dimensional Data
DOWNLOAD
Author : Peter Bühlmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-08

Statistics For High Dimensional Data written by Peter Bühlmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-08 with Mathematics categories.


Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.



Introduction To High Dimensional Statistics


Introduction To High Dimensional Statistics
DOWNLOAD
Author : Christophe Giraud
language : en
Publisher: CRC Press
Release Date : 2021-08-25

Introduction To High Dimensional Statistics written by Christophe Giraud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-25 with Computers categories.


Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.



Foundations Of Data Science


Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23

Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.


Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.



Clustering


Clustering
DOWNLOAD
Author : Rui Xu
language : en
Publisher: John Wiley & Sons
Release Date : 2008-11-03

Clustering written by Rui Xu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-03 with Mathematics categories.


This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.



Computational Intelligence And Healthcare Informatics


Computational Intelligence And Healthcare Informatics
DOWNLOAD
Author : Om Prakash Jena
language : en
Publisher: John Wiley & Sons
Release Date : 2021-10-19

Computational Intelligence And Healthcare Informatics written by Om Prakash Jena and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-19 with Computers categories.


COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.



Statistical Analysis For High Dimensional Data


Statistical Analysis For High Dimensional Data
DOWNLOAD
Author : Arnoldo Frigessi
language : en
Publisher: Springer
Release Date : 2016-02-16

Statistical Analysis For High Dimensional Data written by Arnoldo Frigessi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-16 with Mathematics categories.


This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.