Introduction To Hyperbolic Geometry

DOWNLOAD
Download Introduction To Hyperbolic Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Hyperbolic Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Hyperbolic Geometry
DOWNLOAD
Author : Arlan Ramsay
language : en
Publisher: Springer Science & Business Media
Release Date : 1995-12-16
Introduction To Hyperbolic Geometry written by Arlan Ramsay and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-12-16 with Mathematics categories.
This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.
Hyperbolic Geometry
DOWNLOAD
Author : James W. Anderson
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Hyperbolic Geometry written by James W. Anderson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, providing the reader with a firm grasp of the concepts and techniques of this beautiful area of mathematics. Topics covered include the upper half-space model of the hyperbolic plane, Möbius transformations, the general Möbius group and the subgroup preserving path length in the upper half-space model, arc-length and distance, the Poincaré disc model, convex subsets of the hyperbolic plane, and the Gauss-Bonnet formula for the area of a hyperbolic polygon and its applications. This updated second edition also features: - an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; - the hyperboloid model of the hyperbolic plane; - a brief discussion of generalizations to higher dimensions; - many new exercises.
Geometry Illuminated
DOWNLOAD
Author : Matthew Harvey
language : en
Publisher: The Mathematical Association of America
Release Date : 2015-09-25
Geometry Illuminated written by Matthew Harvey and has been published by The Mathematical Association of America this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-25 with Mathematics categories.
Geometry Illuminated is an introduction to geometry in the plane, both Euclidean and hyperbolic. It is designed to be used in an undergraduate course on geometry, and as such, its target audience is undergraduate math majors. However, much of it should be readable by anyone who is comfortable with the language of mathematical proof. Throughout, the goal is to develop the material patiently. One of the more appealing aspects of geometry is that it is a very "visual" subject. This book hopes to takes full advantage of that, with an extensive use of illustrations as guides. Geometry Illuminated is divided into four principal parts. Part 1 develops neutral geometry in the style of Hilbert, including a discussion of the construction of measure in that system, ultimately building up to the Saccheri-Legendre Theorem. Part 2 provides a glimpse of classical Euclidean geometry, with an emphasis on concurrence results, such as the nine-point circle. Part 3 studies transformations of the Euclidean plane, beginning with isometries and ending with inversion, with applications and a discussion of area in between. Part 4 is dedicated to the development of the Poincaré disk model, and the study of geometry within that model. While this material is traditional, Geometry Illuminated does bring together topics that are generally not found in a book at this level. Most notably, it explicitly computes parametric equations for the pseudosphere and its geodesics. It focuses less on the nature of axiomatic systems for geometry, but emphasizes rather the logical development of geometry within such a system. It also includes sections dealing with trilinear and barycentric coordinates, theorems that can be proved using inversion, and Euclidean and hyperbolic tilings.
Barycentric Calculus In Euclidean And Hyperbolic Geometry
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: World Scientific
Release Date : 2010
Barycentric Calculus In Euclidean And Hyperbolic Geometry written by Abraham A. Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.
Hyperbolic Geometry
DOWNLOAD
Author : Birger Iversen
language : en
Publisher: Cambridge University Press
Release Date : 1992-12-17
Hyperbolic Geometry written by Birger Iversen and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-12-17 with Mathematics categories.
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics. In this book, the rich geometry of the hyperbolic plane is studied in detail, leading to the focal point of the book, Poincare's polygon theorem and the relationship between hyperbolic geometries and discrete groups of isometries. Hyperbolic 3-space is also discussed, and the directions that current research in this field is taking are sketched. This will be an excellent introduction to hyperbolic geometry for students new to the subject, and for experts in other fields.
Hyperbolic Knot Theory
DOWNLOAD
Author : Jessica S. Purcell
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-10-06
Hyperbolic Knot Theory written by Jessica S. Purcell and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-06 with Education categories.
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.
Foundations Of Hyperbolic Manifolds
DOWNLOAD
Author : John Ratcliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Foundations Of Hyperbolic Manifolds written by John Ratcliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
A Gyrovector Space Approach To Hyperbolic Geometry
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2009
A Gyrovector Space Approach To Hyperbolic Geometry written by Abraham A. Ungar and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
Introduction To Hyperbolic Geometry
DOWNLOAD
Author : Arlan Ramsay
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Introduction To Hyperbolic Geometry written by Arlan Ramsay and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.
Introduction To Complex Hyperbolic Spaces
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 1987-05-04
Introduction To Complex Hyperbolic Spaces written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-05-04 with Mathematics categories.
Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other.