Introduction To Numerical Methods For Variational Problems

DOWNLOAD
Download Introduction To Numerical Methods For Variational Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Numerical Methods For Variational Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Numerical Methods For Variational Problems
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer Nature
Release Date : 2019-09-26
Introduction To Numerical Methods For Variational Problems written by Hans Petter Langtangen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-26 with Mathematics categories.
This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.
Introduction To Numerical Analysis
DOWNLOAD
Author : J. Stoer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Introduction To Numerical Analysis written by J. Stoer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Numerical Methods For Nonlinear Variational Problems
DOWNLOAD
Author : Roland Glowinski
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Numerical Methods For Nonlinear Variational Problems written by Roland Glowinski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Lagrange Multiplier Approach To Variational Problems And Applications
DOWNLOAD
Author : Kazufumi Ito
language : en
Publisher: SIAM
Release Date : 2008-01-01
Lagrange Multiplier Approach To Variational Problems And Applications written by Kazufumi Ito and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-01 with Mathematics categories.
Lagrange multiplier theory provides a tool for the analysis of a general class of nonlinear variational problems and is the basis for developing efficient and powerful iterative methods for solving these problems. This comprehensive monograph analyzes Lagrange multiplier theory and shows its impact on the development of numerical algorithms for problems posed in a function space setting. The authors develop and analyze efficient algorithms for constrained optimization and convex optimization problems based on the augumented Lagrangian concept and cover such topics as sensitivity analysis, convex optimization, second order methods, and shape sensitivity calculus. General theory is applied to challenging problems in optimal control of partial differential equations, image analysis, mechanical contact and friction problems, and American options for the Black-Scholes model.
Numerical Approximation Methods For Elliptic Boundary Value Problems
DOWNLOAD
Author : Olaf Steinbach
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-22
Numerical Approximation Methods For Elliptic Boundary Value Problems written by Olaf Steinbach and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-22 with Mathematics categories.
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Vitoriano Ruas
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-28
Numerical Methods For Partial Differential Equations written by Vitoriano Ruas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-28 with Technology & Engineering categories.
Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.
Computational Methods For Inverse Problems
DOWNLOAD
Author : Curtis R. Vogel
language : en
Publisher: SIAM
Release Date : 2002-01-01
Computational Methods For Inverse Problems written by Curtis R. Vogel and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23
Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Algorithms
DOWNLOAD
Author : Justin Solomon
language : en
Publisher: CRC Press
Release Date : 2015-06-24
Numerical Algorithms written by Justin Solomon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-24 with Computers categories.
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Introduction To Applied Numerical Analysis
DOWNLOAD
Author : Richard W. Hamming
language : en
Publisher: Courier Corporation
Release Date : 2012-01-01
Introduction To Applied Numerical Analysis written by Richard W. Hamming and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-01 with Mathematics categories.
"This book is appropriate for an applied numerical analysis course for upper-level undergraduate and graduate students as well as computer science students. Actual programming is not covered, but an extensive range of topics includes round-off and function evaluation, real zeros of a function, integration, ordinary differential equations, optimization, orthogonal functions, Fourier series, and much more. 1989 edition"--Provided by publisher.