Introduction To Probabilistic And Statistical Methods With Examples In R

DOWNLOAD
Download Introduction To Probabilistic And Statistical Methods With Examples In R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Probabilistic And Statistical Methods With Examples In R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Probabilistic And Statistical Methods With Examples In R
DOWNLOAD
Author : Katarzyna Stapor
language : en
Publisher: Springer Nature
Release Date : 2020-05-22
Introduction To Probabilistic And Statistical Methods With Examples In R written by Katarzyna Stapor and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-22 with Mathematics categories.
This book strikes a healthy balance between theory and applications, ensuring that it doesn’t offer a set of tools with no mathematical roots. It is intended as a comprehensive and largely self-contained introduction to probability and statistics for university students from various faculties, with accompanying implementations of some rudimentary statistical techniques in the language R. The content is divided into three basic parts: the first includes elements of probability theory, the second introduces readers to the basics of descriptive and inferential statistics (estimation, hypothesis testing), and the third presents the elements of correlation and linear regression analysis. Thanks to examples showing how to approach real-world problems using statistics, readers will acquire stronger analytical thinking skills, which are essential for analysts and data scientists alike.
Learning Statistics With R
DOWNLOAD
Author : Danielle Navarro
language : en
Publisher:
Release Date : 2018
Learning Statistics With R written by Danielle Navarro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Introduction To Statistical Methods Design Of Experiments And Statistical Quality Control
DOWNLOAD
Author : Dharmaraja Selvamuthu
language : en
Publisher: Springer
Release Date : 2018-09-03
Introduction To Statistical Methods Design Of Experiments And Statistical Quality Control written by Dharmaraja Selvamuthu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.
This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.
Probability With R
DOWNLOAD
Author : Jane M. Horgan
language : en
Publisher: John Wiley & Sons
Release Date : 2019-12-18
Probability With R written by Jane M. Horgan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-18 with Mathematics categories.
Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
Statistical And Probabilistic Methods In Actuarial Science
DOWNLOAD
Author : Philip J. Boland
language : en
Publisher: CRC Press
Release Date : 2007-03-05
Statistical And Probabilistic Methods In Actuarial Science written by Philip J. Boland and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-03-05 with Business & Economics categories.
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of
A First Course In Bayesian Statistical Methods
DOWNLOAD
Author : Peter D. Hoff
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-06-02
A First Course In Bayesian Statistical Methods written by Peter D. Hoff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-02 with Mathematics categories.
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Introduction To Probability Statistics And Random Processes
DOWNLOAD
Author : Hossein Pishro-Nik
language : en
Publisher:
Release Date : 2014-08-15
Introduction To Probability Statistics And Random Processes written by Hossein Pishro-Nik and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-15 with Probabilities categories.
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
A Modern Introduction To Probability And Statistics
DOWNLOAD
Author : F.M. Dekking
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30
A Modern Introduction To Probability And Statistics written by F.M. Dekking and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.
Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap.
Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15
Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Mathematics categories.
Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.
Using R For Introductory Statistics Second Edition
DOWNLOAD
Author : John Verzani
language : en
Publisher: CRC Press
Release Date : 2014-06-26
Using R For Introductory Statistics Second Edition written by John Verzani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-26 with Mathematics categories.
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.