Introduction To Statistical Computing And Visualization Using R

DOWNLOAD
Download Introduction To Statistical Computing And Visualization Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Statistical Computing And Visualization Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15
Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Mathematics categories.
Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.
Introduction To Statistical Computing And Visualization Using R
DOWNLOAD
Author : Megha Rathi
language : en
Publisher: CRC Press
Release Date : 2025-05-01
Introduction To Statistical Computing And Visualization Using R written by Megha Rathi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-01 with Computers categories.
The book provides a foundational guide to statistical computing and visualisation Using R programming with an emphasis on practical data analysis skills that are directly applicable to diverse fields like finance, defence, health, and education. It uniquely combines a thorough explanation of basic constructs with advanced topics such as data visualisation, statistical modeling, and probability, making it accessible yet comprehensive for learners across disciplines. This approach allows readers not only to build essential R skills but also to apply them to real-world scenarios, equipping students and professionals from various disciplines with versatile analytical tools. It offers a comprehensive yet approachable introduction for students and scholars from various disciplines using R. Includes practical and interactive elements such as quizzes, coding exercises, and hands-on projects can provide an engaging and effective learning experience for readers Provides complete code solutions to every problem presented, including detailed answers to even the most complex questions Presents case studies that can help contextualize the concepts covered in the book by showing how they are used in specific industries, fields, or contexts Offers application-based practical data analysis with cases in various fields and sectors, such as finance, healthcare, and marketing Focuses on best practices and efficient coding techniques, improving productivity and maintainability of R code
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Introduction To Statistical Computing And Visualization Using R
DOWNLOAD
Author : Megha Rathi
language : en
Publisher:
Release Date : 2025
Introduction To Statistical Computing And Visualization Using R written by Megha Rathi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025 with R (Computer program language) categories.
"The book provides a foundational guide to statistical computing and visualisation Using R programming with an emphasis on practical data analysis skills that are directly applicable to diverse fields like finance, defence, health, and education. It uniquely combines a thorough explanation of basic constructs with advanced topics such as data visualisation, statistical modeling, and probability, making it accessible yet comprehensive for learners across disciplines. This approach allows readers not only to build essential R skills but also to apply them to real-world scenarios, equipping students and professionals from various disciplines with versatile analytical tools. It offers a comprehensive yet approachable introduction for students and scholars from various disciplines using R. Includes practical and interactive elements such as quizzes, coding exercises, and hands-on projects can provide an engaging and effective learning experience for readers Provides complete code solutions to every problem presented, including detailed answers to even the most complex questions Presents case studies that can help contextualize the concepts covered in the book by showing how they are used in specific industries, fields, or contexts Offers application based practical data analysis with cases in various fields and sectors, such as finance, healthcare, and marketing Focuses on best practices and efficient coding techniques, improving productivity and maintainability of R code"--
Data Visualisation With R
DOWNLOAD
Author : Thomas Rahlf
language : en
Publisher: Springer Nature
Release Date : 2019-11-23
Data Visualisation With R written by Thomas Rahlf and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-23 with Computers categories.
This book introduces readers to the fundamentals of creating presentation graphics using R, based on 111 detailed and complete scripts. It shows how bar and column charts, population pyramids, Lorenz curves, box plots, scatter plots, time series, radial polygons, Gantt charts, heat maps, bump charts, mosaic and balloon charts, and a series of different thematic map types can be created using R’s Base Graphics System. Every example uses real data and includes step-by-step explanations of the figures and their programming. This second edition contains additional examples for cartograms, chord-diagrams and networks, and interactive visualizations with Javascript. The open source software R is an established standard and a powerful tool for various visualizing applications, integrating nearly all technologies relevant for data visualization. The basic software, enhanced by more than 14000 extension packs currently freely available, is intensively used by organizations including Google, Facebook and the CIA. The book serves as a comprehensive reference guide to a broad variety of applications in various fields. This book is intended for all kinds of R users, ranging from experts, for whom especially the example codes are particularly useful, to beginners, who will find the finished graphics most helpful in learning what R can actually deliver.
Statistical Analysis Of Network Data With R
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer
Release Date : 2014-05-22
Statistical Analysis Of Network Data With R written by Eric D. Kolaczyk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-22 with Computers categories.
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Learn R For Applied Statistics
DOWNLOAD
Author : Eric Goh Ming Hui
language : en
Publisher: Apress
Release Date : 2018-11-30
Learn R For Applied Statistics written by Eric Goh Ming Hui and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Introduction To Data Science
DOWNLOAD
Author : Rafael A. Irizarry
language : en
Publisher: CRC Press
Release Date : 2019-11-12
Introduction To Data Science written by Rafael A. Irizarry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.
Using R For Introductory Statistics Second Edition
DOWNLOAD
Author : John Verzani
language : en
Publisher: CRC Press
Release Date : 2014-06-26
Using R For Introductory Statistics Second Edition written by John Verzani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-26 with Mathematics categories.
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
A Primer In Biological Data Analysis And Visualization Using R
DOWNLOAD
Author : Gregg Hartvigsen
language : en
Publisher: Columbia University Press
Release Date : 2014-02-18
A Primer In Biological Data Analysis And Visualization Using R written by Gregg Hartvigsen and has been published by Columbia University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-18 with Education categories.
R is the most widely used open-source statistical and programming environment for the analysis and visualization of biological data. Drawing on Gregg Hartvigsen's extensive experience teaching biostatistics and modeling biological systems, this text is an engaging, practical, and lab-oriented introduction to R for students in the life sciences. Underscoring the importance of R and RStudio in organizing, computing, and visualizing biological statistics and data, Hartvigsen guides readers through the processes of entering data into R, working with data in R, and using R to visualize data using histograms, boxplots, barplots, scatterplots, and other common graph types. He covers testing data for normality, defining and identifying outliers, and working with non-normal data. Students are introduced to common one- and two-sample tests as well as one- and two-way analysis of variance (ANOVA), correlation, and linear and nonlinear regression analyses. This volume also includes a section on advanced procedures and a chapter introducing algorithms and the art of programming using R.