Introduction To The Perturbation Theory Of Hamiltonian Systems

DOWNLOAD
Download Introduction To The Perturbation Theory Of Hamiltonian Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Perturbation Theory Of Hamiltonian Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To The Perturbation Theory Of Hamiltonian Systems
DOWNLOAD
Author : Dmitry Treschev
language : en
Publisher: Springer
Release Date : 2010-04-29
Introduction To The Perturbation Theory Of Hamiltonian Systems written by Dmitry Treschev and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-29 with Mathematics categories.
This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.
Introduction To The Perturbation Theory Of Hamiltonian Systems
DOWNLOAD
Author : Dmitry Treschev
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-08
Introduction To The Perturbation Theory Of Hamiltonian Systems written by Dmitry Treschev and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-08 with Mathematics categories.
This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cially.
Introduction To Hamiltonian Dynamical Systems And The N Body Problem
DOWNLOAD
Author : Kenneth Meyer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Introduction To Hamiltonian Dynamical Systems And The N Body Problem written by Kenneth Meyer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.
Symmetry And Perturbation Theory In Nonlinear Dynamics
DOWNLOAD
Author : Giampaolo Cicogna
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-07-01
Symmetry And Perturbation Theory In Nonlinear Dynamics written by Giampaolo Cicogna and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-07-01 with Science categories.
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.
Introduction To Perturbation Theory In Quantum Mechanics
DOWNLOAD
Author : Francisco M. Fernandez
language : en
Publisher: CRC Press
Release Date : 2000-09-19
Introduction To Perturbation Theory In Quantum Mechanics written by Francisco M. Fernandez and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-09-19 with Science categories.
Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation “/p>
Nonlinear Systems
DOWNLOAD
Author : R. Sahadevan
language : en
Publisher: CRC Press
Release Date : 2002
Nonlinear Systems written by R. Sahadevan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
Nonlinear Systems covers a wide range of topics in nonlinear science, from general nonlinear dynamics, soliton systems, and the solution of nonlinear differential and difference equations to the integrability of discrete nonlinear systems, and classical and quantum chaos. Its chapters reflect the current status of important nonlinear theories in various areas of applied mathematics and mathematical physics and collectively provide a comprehensive picture of new areas and their applications.
An Introduction To Lagrangian Mechanics
DOWNLOAD
Author : Alain Jean Brizard
language : en
Publisher: World Scientific
Release Date : 2008
An Introduction To Lagrangian Mechanics written by Alain Jean Brizard and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Science categories.
An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler?Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.This textbook is suitable for undergraduate students who have acquired the mathematical skills needed to complete a course in Modern Physics.
Notes On Hamiltonian Dynamical Systems
DOWNLOAD
Author : Antonio Giorgilli
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05
Notes On Hamiltonian Dynamical Systems written by Antonio Giorgilli and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Mathematics categories.
Introduces Hamiltonian dynamics from the very beginning, culminating in the most important recent results: Kolmogorov's and Nekhoroshev's.
Perturbation Theory
DOWNLOAD
Author : Giuseppe Gaeta
language : en
Publisher: Springer Nature
Release Date : 2022-12-16
Perturbation Theory written by Giuseppe Gaeta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-16 with Science categories.
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Kam Story The A Friendly Introduction To The Content History And Significance Of Classical Kolmogorov Arnold Moser Theory
DOWNLOAD
Author : H Scott Dumas
language : en
Publisher: World Scientific Publishing Company
Release Date : 2014-02-28
Kam Story The A Friendly Introduction To The Content History And Significance Of Classical Kolmogorov Arnold Moser Theory written by H Scott Dumas and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-28 with Mathematics categories.
This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science.The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a “breakthrough”). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory).Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it leads the reader through an accessible account of the theory and places it in its proper context in mathematics, physics, and the history of science.