[PDF] Knowledge Representation Techniques - eBooks Review

Knowledge Representation Techniques


Knowledge Representation Techniques
DOWNLOAD

Download Knowledge Representation Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knowledge Representation Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Knowledge Representation Techniques


Knowledge Representation Techniques
DOWNLOAD
Author : Patrick Doherty
language : en
Publisher: Springer
Release Date : 2007-05-31

Knowledge Representation Techniques written by Patrick Doherty and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-31 with Computers categories.


1. 1 Background The basis for the material in this book centers around research done in an ongoing long-term project which focuses on the development of highly au- 1 tonomousunmannedaerialvehiclesystems. Theactualplatformwhichserves as a case study for the research in this book will be described in detail later in this chapter. Before doing that, a brief background of the motivations - hind this research will be provided. One of the main research topics in the project is knowledge representation and reasoning and its use in Uav pl- forms. A very strong constraint has been placed on the nature of research done in the project where theoretical results, to the greatest extent possible, should serve as a basis for tractable reasoning mechanisms for use in a fully deployed autonomous Uav operating under soft real-time constraints asso- ated with the types of mission scenarios envisioned. Considering that much of the work with knowledge representation in this context focuses on application domains where one can only hope for an incomplete characterization of such domains, this methodological constraint has proven to be quite challenging since, in essence, the focus is on tractable approximate and nonmonotonic reasoning systems. As is well known, until recently, nonmonotonic formalisms have had a notorious reputation for lack of tractable and scalable reasoning systems.



Foundations Of Biomedical Knowledge Representation


Foundations Of Biomedical Knowledge Representation
DOWNLOAD
Author : Arjen Hommersom
language : en
Publisher: Springer
Release Date : 2016-01-07

Foundations Of Biomedical Knowledge Representation written by Arjen Hommersom and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-07 with Computers categories.


Medicine and health care are currently faced with a significant rise in their complexity. This is partly due to the progress made during the past three decades in the fundamental biological understanding of the causes of health and disease at the molecular, (sub)cellular, and organ level. Since the end of the 1970s, when knowledge representation and reasoning in the biomedical field became a separate area of research, huge progress has been made in the development of methods and tools that are finally able to impact on the way medicine is being practiced. Even though there are huge differences in the techniques and methods used by biomedical researchers, there is now an increasing tendency to share research results in terms of formal knowledge representation methods, such as ontologies, statistical models, network models, and mathematical models. As there is an urgent need for health-care professionals to make better decisions, computer-based support using this knowledge is now becoming increasingly important. It may also be the only way to integrate research results from the different parts of the spectrum of biomedical and clinical research. The aim of this book is to shed light on developments in knowledge representation at different levels of biomedical application, ranging from human biology to clinical guidelines, and using different techniques, from probability theory and differential equations to logic. The book starts with two introductory chapters followed by 18 contributions organized in the following topical sections: diagnosis of disease; monitoring of health and disease and conformance; assessment of health and personalization; prediction and prognosis of health and disease; treatment of disease; and recommendations.



Handbook Of Knowledge Representation


Handbook Of Knowledge Representation
DOWNLOAD
Author : Bruce Porter
language : en
Publisher: Elsevier Science Limited
Release Date : 2008-01

Handbook Of Knowledge Representation written by Bruce Porter and has been published by Elsevier Science Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01 with Computers categories.


Knowledge representation, which lies at the core of artificial intelligence, is concerned with encoding knowledge on computers to enable systems to reason automatically. The aims are to help readers make their computer smarter, handle qualitative and uncertain information, and improve computational tractability.



Knowledge Representation And Reasoning


Knowledge Representation And Reasoning
DOWNLOAD
Author : Ronald Brachman
language : en
Publisher: Morgan Kaufmann
Release Date : 2004-05-19

Knowledge Representation And Reasoning written by Ronald Brachman and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-19 with Computers categories.


Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.



Knowledge Representation


Knowledge Representation
DOWNLOAD
Author : Arthur B. Markman
language : en
Publisher: Psychology Press
Release Date : 2013-06-17

Knowledge Representation written by Arthur B. Markman and has been published by Psychology Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-17 with Psychology categories.


Knowledge representation is fundamental to the study of mind. All theories of psychological processing are rooted in assumptions about how information is stored. These assumptions, in turn, influence the explanatory power of theories. This book fills a gap in the existing literature by providing an overview of types of knowledge representation techniques and their use in cognitive models. Organized around types of representations, this book begins with a discussion of the foundations of knowledge representation, then presents discussions of different ways that knowledge representation has been used. Both symbolic and connectionist approaches to representation are discussed and a set of recommendations about the way representations should be used is presented. This work can be used as the basis for a course on knowledge representation or can be read independently. It will be useful to students of psychology as well as people in related disciplines--computer science, philosophy, anthropology, and linguistics--who want an introduction to techniques for knowledge representation.



Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges


Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges
DOWNLOAD
Author : Ilaria Tiddi
language : en
Publisher:
Release Date : 2020

Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges written by Ilaria Tiddi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Artificial intelligence categories.


The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.



Prediction And Analysis For Knowledge Representation And Machine Learning


Prediction And Analysis For Knowledge Representation And Machine Learning
DOWNLOAD
Author : Avadhesh Kumar
language : en
Publisher: CRC Press
Release Date : 2022-01-31

Prediction And Analysis For Knowledge Representation And Machine Learning written by Avadhesh Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-31 with Computers categories.


A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which includes both basic and advanced concepts.



Artificial Intelligence


Artificial Intelligence
DOWNLOAD
Author : Lavanya Sharma
language : en
Publisher: CRC Press
Release Date : 2021-10-28

Artificial Intelligence written by Lavanya Sharma and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-28 with Computers categories.


Artificial Intelligence: Technologies, Applications, and Challenges is an invaluable resource for readers to explore the utilization of Artificial Intelligence, applications, challenges, and its underlying technologies in different applications areas. Using a series of present and future applications, such as indoor-outdoor securities, graphic signal processing, robotic surgery, image processing, character recognition, augmented reality, object detection and tracking, intelligent traffic monitoring, emergency department medical imaging, and many more, this publication will support readers to get deeper knowledge and implementing the tools of Artificial Intelligence. The book offers comprehensive coverage of the most essential topics, including: Rise of the machines and communications to IoT (3G, 5G). Tools and Technologies of Artificial Intelligence Real-time applications of artificial intelligence using machine learning and deep learning. Challenging Issues and Novel Solutions for realistic applications Mining and tracking of motion based object data image processing and analysis into the unified framework to understand both IoT and Artificial Intelligence-based applications. This book will be an ideal resource for IT professionals, researchers, under or post-graduate students, practitioners, and technology developers who are interested in gaining insight to the Artificial Intelligence with deep learning, IoT and machine learning, critical applications domains, technologies, and solutions to handle relevant challenges.



Knowledge Representation Reasoning And The Design Of Intelligent Agents


Knowledge Representation Reasoning And The Design Of Intelligent Agents
DOWNLOAD
Author : Michael Gelfond
language : en
Publisher: Cambridge University Press
Release Date : 2014-03-10

Knowledge Representation Reasoning And The Design Of Intelligent Agents written by Michael Gelfond and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-10 with Computers categories.


This in-depth introduction for students and researchers shows how to use ASP for intelligent tasks, including answering queries, planning, and diagnostics.



Representation Learning For Natural Language Processing


Representation Learning For Natural Language Processing
DOWNLOAD
Author : Zhiyuan Liu
language : en
Publisher: Springer Nature
Release Date : 2020-07-03

Representation Learning For Natural Language Processing written by Zhiyuan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-03 with Computers categories.


This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.