[PDF] Learn From Scratch Machine Learning With Python Gui - eBooks Review

Learn From Scratch Machine Learning With Python Gui


Learn From Scratch Machine Learning With Python Gui
DOWNLOAD

Download Learn From Scratch Machine Learning With Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learn From Scratch Machine Learning With Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Learn From Scratch Machine Learning With Python Gui


Learn From Scratch Machine Learning With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2021-03-03

Learn From Scratch Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-03 with Computers categories.


In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.



Learn From Scratch Backpropagation Neural Networks Using Python Gui Mariadb


Learn From Scratch Backpropagation Neural Networks Using Python Gui Mariadb
DOWNLOAD

Author : Hamzan Wadi
language : en
Publisher: Turida Publisher
Release Date :

Learn From Scratch Backpropagation Neural Networks Using Python Gui Mariadb written by Hamzan Wadi and has been published by Turida Publisher this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


This book provides a practical explanation of the backpropagation neural networks and how it can be implemented for data prediction and data classification. The discussion in this book is presented in step by step so that it will help readers understand the fundamental of the backpropagation neural networks and its steps. This book is very suitable for students, researchers, and anyone who want to learn and implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The discussion in this book will provide readers deep understanding about the backpropagation neural networks architecture and its parameters. The readers will be guided to understand the steps of the backpropagation neural networks for data prediction and data classification through case examples. In addition, readers are also guided step by step to implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The readers will be guided to create their own backpropagation neural networks class and build their complete applications for data prediction and data classification. This book consists of three cases which are realized into complete projects using the Python GUI and MariaDB. The three cases that will be learned in this book are as follow. 1. Sales prediction using the backpropagation neural networks. 2. Earthquake data prediction using the backpropagation neural networks. 3. Fruit quality classification using the backpropagation neural networks. Each case in this book is equipped with a mathematical calculation that will help the reader understand each step that must be taken. The cases in this book are realized into three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB. The final result of this book is that the readers are able to realize each step of the backpropagation neural networks for data prediction and data classification. In Addition, the readers also are able to create the backpropagation neural networks applications which consists of three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB.



Step By Step Tutorials On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui


Step By Step Tutorials On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-18

Step By Step Tutorials On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-18 with Computers categories.


In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. Here's the outline of the steps, focusing on transfer learning: 1. Dataset Preparation: Download the Fruits 360 dataset from Kaggle. Extract the dataset files and organize them into appropriate folders for training and testing. Install the necessary libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy; Data Preprocessing: Use OpenCV to read and load the fruit images from the dataset. Resize the images to a consistent size to feed them into the neural network. Convert the images to numerical arrays using NumPy. Normalize the image pixel values to a range between 0 and 1. Split the dataset into training and testing sets using Scikit-Learn. 3. Building the Model with Transfer Learning: Import the required modules from TensorFlow and Keras. Load a pre-trained model (e.g., VGG16, ResNet50, InceptionV3) without the top (fully connected) layers. Freeze the weights of the pre-trained layers to prevent them from being updated during training. Add your own fully connected layers on top of the pre-trained layers. Compile the model by specifying the loss function, optimizer, and evaluation metrics; 4. Model Training: Use the prepared training data to train the model. Specify the number of epochs and batch size for training. Monitor the training process for accuracy and loss using callbacks; 5. Model Evaluation: Evaluate the trained model on the test dataset using Scikit-Learn. Calculate accuracy, precision, recall, and F1-score for the classification results; 6. Predictions: Load and preprocess new fruit images for prediction using the same steps as in data preprocessing. Use the trained model to predict the class labels of the new images. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. The following steps are taken: Set up your development environment: Install the necessary libraries such as TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, and any other dependencies required for the tutorial; Load and preprocess the dataset: Use libraries like OpenCV and NumPy to load and preprocess the dataset. Split the dataset into training and testing sets; Design and train the classification model: Use TensorFlow and Keras to design a convolutional neural network (CNN) model for image classification. Define the architecture of the model, compile it with an appropriate loss function and optimizer, and train it using the training dataset; Evaluate the model: Evaluate the trained model using the testing dataset. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance; Make predictions: Use the trained model to make predictions on new unseen images. Preprocess the images, feed them into the model, and obtain the predicted class labels; Visualize the results: Use libraries like Matplotlib or OpenCV to visualize the results, such as displaying sample images with their predicted labels, plotting the training/validation loss and accuracy curves, and creating a confusion matrix. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. Here are the steps you can follow to perform furniture detection: Dataset Preparation: Extract the dataset files and organize them into appropriate directories for training and testing; Data Preprocessing: Load the dataset using Pandas to analyze and preprocess the data. Explore the dataset to understand its structure, features, and labels. Perform any necessary preprocessing steps like resizing images, normalizing pixel values, and splitting the data into training and testing sets; Feature Extraction and Representation: Use OpenCV or any image processing libraries to extract meaningful features from the images. This might include techniques like edge detection, color-based features, or texture analysis. Convert the images and extracted features into a suitable representation for machine learning models. This can be achieved using NumPy arrays or other formats compatible with the chosen libraries; Model Training: Define a deep learning model using TensorFlow and Keras for furniture detection. You can choose pre-trained models like VGG16, ResNet, or custom architectures. Compile the model with an appropriate loss function, optimizer, and evaluation metrics. Train the model on the preprocessed dataset using the training set. Adjust hyperparameters like batch size, learning rate, and number of epochs to improve performance; Model Evaluation: Evaluate the trained model using the testing set. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance. Analyze the results and identify areas for improvement; Model Deployment and Inference: Once satisfied with the model's performance, save it to disk for future use. Deploy the model to make predictions on new, unseen images. Use the trained model to perform furniture detection on images by applying it to the test set or new data. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. Here are the general steps to implement image classification using the Fashion MNIST dataset: Import the necessary libraries: Import the required libraries such as TensorFlow, Keras, NumPy, Pandas, and Matplotlib for handling the dataset, building the model, and visualizing the results; Load and preprocess the dataset: Load the Fashion MNIST dataset, which consists of images of clothing items. Split the dataset into training and testing sets. Preprocess the images by scaling the pixel values to a range of 0 to 1 and converting the labels to categorical format; Define the model architecture: Create a convolutional neural network (CNN) model using Keras. The CNN consists of convolutional layers, pooling layers, and fully connected layers. Choose the appropriate architecture based on the complexity of the dataset; Compile the model: Specify the loss function, optimizer, and evaluation metric for the model. Common choices include categorical cross-entropy for multi-class classification and Adam optimizer; Train the model: Fit the model to the training data using the fit() function. Specify the number of epochs (iterations) and batch size. Monitor the training progress by tracking the loss and accuracy; Evaluate the model: Evaluate the trained model using the test dataset. Calculate the accuracy and other performance metrics to assess the model's performance; Make predictions: Use the trained model to make predictions on new unseen images. Load the test images, preprocess them, and pass them through the model to obtain class probabilities or predictions; Visualize the results: Visualize the training progress by plotting the loss and accuracy curves. Additionally, you can visualize the predictions and compare them with the true labels to gain insights into the model's performance.



The Practical Guides On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui


The Practical Guides On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-17

The Practical Guides On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-17 with Computers categories.


In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display image histogram. It is a graphical representation that displays the distribution of pixel intensities in an image. It provides information about the frequency of occurrence of each intensity level in the image. The histogram allows us to understand the overall brightness or contrast of the image and can reveal important characteristics such as dynamic range, exposure, and the presence of certain image features. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. The MNIST dataset is a widely used dataset in machine learning and computer vision, particularly for image classification tasks. It consists of a collection of handwritten digits from zero to nine, where each digit is represented as a 28x28 grayscale image. The dataset was created by collecting handwriting samples from various individuals and then preprocessing them to standardize the format. Each image in the dataset represents a single digit and is labeled with the corresponding digit it represents. The labels range from 0 to 9, indicating the true value of the handwritten digit. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset. Following are the steps taken in this chapter: Dataset Exploration: Explore the Brain Image MRI dataset from Kaggle. Describe the structure of the dataset, the different classes (tumor vs. non-tumor), and any preprocessing steps required; Data Preprocessing: Preprocess the dataset to prepare it for model training. This may include tasks such as resizing images, normalizing pixel values, splitting data into training and testing sets, and creating labels; Model Building: Use TensorFlow and Keras to build a deep learning model for brain tumor detection. Choose an appropriate architecture, such as a convolutional neural network (CNN), and configure the model layers; Model Training: Train the brain tumor detection model using the preprocessed dataset. Specify the loss function, optimizer, and evaluation metrics. Monitor the training process and visualize the training/validation accuracy and loss over epochs; Model Evaluation: Evaluate the trained model on the testing dataset. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance; Prediction and Visualization: Use the trained model to make predictions on new MRI images. Visualize the predicted results alongside the ground truth labels to demonstrate the effectiveness of the model. Finally, you will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle using MobileNetV2 and CNN models. Following are the steps taken in this chapter: Data Exploration: Load the dataset using Pandas, perform exploratory data analysis (EDA) to gain insights into the data, and visualize the distribution of gender classes; Data Preprocessing: Preprocess the dataset by performing necessary transformations, such as resizing images, converting labels to numerical format, and splitting the data into training, validation, and test sets; Model Building: Use TensorFlow and Keras to build a gender classification model. Define the architecture of the model, compile it with appropriate loss and optimization functions, and summarize the model's structure; Model Training: Train the model on the training set, monitor its performance on the validation set, and tune hyperparameters if necessary. Visualize the training history to analyze the model's learning progress; Model Evaluation: Evaluate the trained model's performance on the test set using various metrics such as accuracy, precision, recall, and F1 score. Generate a classification report and a confusion matrix to assess the model's performance in detail; Prediction and Visualization: Use the trained model to make gender predictions on new, unseen data. Visualize a few sample predictions along with the corresponding images. Finally, you will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset using CNN model. The FER2013 dataset contains facial images categorized into seven different emotions: anger, disgust, fear, happiness, sadness, surprise, and neutral. To perform facial expression recognition using this dataset, you would typically follow these steps; Data Preprocessing: Load and preprocess the dataset. This may involve resizing the images, converting them to grayscale, and normalizing the pixel values; Data Split: Split the dataset into training, validation, and testing sets. The training set is used to train the model, the validation set is used to tune hyperparameters and evaluate the model's performance during training, and the testing set is used to assess the final model's accuracy; Model Building: Build a deep learning model using TensorFlow and Keras. This typically involves defining the architecture of the model, selecting appropriate layers (such as convolutional layers, pooling layers, and fully connected layers), and specifying the activation functions and loss functions; Model Training: Train the model using the training set. This involves feeding the training images through the model, calculating the loss, and updating the model's parameters using optimization techniques like backpropagation and gradient descent; Model Evaluation: Evaluate the trained model's performance using the validation set. This can include calculating metrics such as accuracy, precision, recall, and F1 score to assess how well the model is performing; Model Testing: Assess the model's accuracy and performance on the testing set, which contains unseen data. This step helps determine how well the model generalizes to new, unseen facial expressions; Prediction: Use the trained model to make predictions on new images or live video streams. This involves detecting faces in the images using OpenCV, extracting facial features, and feeding the processed images into the model for prediction. Then, you will also build a GUI application for this purpose.



Stroke Analysis And Prediction Using Scikit Learn Keras And Tensorflow With Python Gui


Stroke Analysis And Prediction Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-15

Stroke Analysis And Prediction Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-15 with Computers categories.


In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.



Step By Step Tutorial Image Classification Using Scikit Learn Keras And Tensorflow With Python Gui


Step By Step Tutorial Image Classification Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-21

Step By Step Tutorial Image Classification Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-21 with Computers categories.


In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Here's an overview of the steps involved in classifying monkey species using the 10 Monkey Species dataset: Dataset Preparation: Download the 10 Monkey Species dataset from Kaggle and extract the files. The dataset should consist of separate folders for each monkey species, with corresponding images.; Load and Preprocess Images: Use libraries such as OpenCV to load the images from the dataset. Resize the images to a consistent size (e.g., 224x224 pixels) to ensure uniformity.; Split the Dataset: Divide the dataset into training and testing sets. Typically, an 80:20 or 70:30 split is used, where the larger portion is used for training and the smaller portion for testing the model's performance.; Label Encoding: Encode the categorical labels (monkey species) into numeric form. This step is necessary to train a machine learning model, as most algorithms expect numerical inputs.; Feature Extraction: Extract meaningful features from the images using techniques like deep learning or image processing algorithms. This step helps in representing the images in a format that the machine learning model can understand.; Model Training: Use libraries like TensorFlow and Keras to train a machine learning model on the preprocessed data. Choose an appropriate model architecture, in this case, MobileNetV2.; Model Evaluation: Evaluate the trained model on the testing set to assess its performance. Metrics like accuracy, precision, recall, and F1-score can be used to evaluate the model's classification performance.; Predictions: Use the trained model to make predictions on new, unseen images. Pass the images through the trained model and obtain the predicted labels for the monkey species. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Here's the outline of the steps: Step 1: Dataset Preparation: Download the rock-paper-scissors dataset from Kaggle by visiting the provided link and clicking on the "Download" button. Save the dataset to a local directory on your machine. Extract the downloaded dataset to a suitable location. This will create a folder containing the images for rock, paper, and scissors.; Step 2: Data Preprocessing: Import the required libraries: TensorFlow, Keras, NumPy, OpenCV, and Pandas. Load the dataset using OpenCV: Iterate through the image files in the dataset directory and use OpenCV's cv2.imread() function to load each image. You can specify the image's file extension (e.g., PNG) and directory path. Preprocess the images: Resize the loaded images to a consistent size using OpenCV's cv2.resize() function. You may choose a specific width and height suitable for your model. Prepare the labels: Create a list or array to store the corresponding labels for each image (rock, paper, or scissors). This can be done based on the file naming convention or by mapping images to their respective labels using a dictionary.; Step 3: Model Training: Create a convolutional neural network (CNN) model using Keras: Define a CNN architecture using Keras' Sequential model or functional API. This typically consists of convolutional layers, pooling layers, and dense layers. Compile the model: Specify the loss function (e.g., categorical cross-entropy) and optimizer (e.g., Adam) using Keras' compile() function. You can also define additional metrics to evaluate the model's performance. Train the model: Use Keras' fit() function to train the model on the preprocessed dataset. Specify the training data, labels, batch size, number of epochs, and validation data if available. This will optimize the model's weights based on the provided dataset. Save the trained model: Once the model training is complete, you can save the trained model to disk using Keras' save() or save_weights() function. This allows you to load the model later for predictions or further training.; Step 4: Model Evaluation: Evaluate the trained model: Use Keras' evaluate() function to assess the model's performance on a separate testing dataset. Provide the testing data and labels to calculate metrics such as accuracy, precision, recall, and F1 score. This will help you understand how well the model generalizes to new, unseen data. Analyze the model's performance: Interpret the evaluation metrics and analyze any potential areas of improvement. You can also visualize the confusion matrix or classification report to gain more insights into the model's predictions.; Step 5: Prediction: Use the trained model for predictions: Load the saved model using Keras' load_model() function. Then, pass new, unseen images through the model to obtain predictions. Preprocess these images in the same way as the training images (resize, normalize, etc.). Visualize and interpret predictions: Display the predicted labels alongside the corresponding images to see how well the model performs. You can use libraries like Matplotlib or OpenCV to show the images and their predicted labels. Additionally, you can calculate the accuracy of the model's predictions on the new dataset. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Here are the outline steps: Import the required libraries: TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy. Load and preprocess the dataset: Read the images from the dataset folder. Resize the images to a fixed size. Store the images and corresponding labels.; Split the dataset into training and testing sets: Split the data and labels into training and testing sets using a specified ratio.; Encode the labels: Convert the categorical labels into numerical format. Perform one-hot encoding on the labels.; Build MobileNetV2 model using Keras: Create a sequential model. Add convolutional layers with activation functions. Add pooling layers for downsampling. Flatten the output and add dense layers. Set the output layer with softmax activation.; Compile and train the model: Compile the model with an optimizer and loss function. Train the model using the training data and labels. Specify the number of epochs and batch size.; Evaluate the model: Evaluate the trained model using the testing data and labels. Calculate the accuracy of the model.; Make predictions on new images: Load and preprocess a new image. Use the trained model to predict the label of the new image. Convert the predicted label from numerical format to categorical.



Three Books In One Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui


Three Books In One Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2021-05-20

Three Books In One Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-20 with Computers categories.


BOOK 1: THE PRACTICAL GUIDES ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. BOOK 2: STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. BOOK 3: PROJECT-BASED APPROACH ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download).



Opinion Mining And Prediction Using Machine Learning And Deep Learning With Python Gui


Opinion Mining And Prediction Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-27

Opinion Mining And Prediction Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-27 with Computers categories.


In the context of sentiment analysis and opinion mining, this project began with dataset exploration. The dataset, comprising user reviews or social media posts, was examined to understand the sentiment labels' distribution. This analysis provided insights into the prevalence of positive or negative opinions, laying the foundation for sentiment classification. To tackle sentiment classification, we employed a range of machine learning algorithms, including Support Vector, Logistic Regression, K-Nearest Neighbours Classiier, Decision Tree, Random Forest Classifier, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Adaboost Classifiers. These algorithms were combined with different vectorization techniques such as Hashing Vectorizer, Count Vectorizer, and TF-IDF Vectorizer. By converting text data into numerical representations, these models were trained and evaluated to identify the most effective combination for sentiment classification. In addition to traditional machine learning algorithms, we explored the power of recurrent neural networks (RNNs) and their variant, Long Short-Term Memory (LSTM). LSTM is particularly adept at capturing contextual dependencies and handling sequential data. The text data was tokenized and padded to ensure consistent input length, allowing the LSTM model to learn from the sequential nature of the text. Performance metrics, including accuracy, were used to evaluate the model's ability to classify sentiments accurately. Furthermore, we delved into Convolutional Neural Networks (CNNs), another deep learning model known for its ability to extract meaningful features. The text data was preprocessed and transformed into numerical representations suitable for CNN input. The architecture of the CNN model, consisting of embedding, convolutional, pooling, and dense layers, facilitated the extraction of relevant features and the classification of sentiments. Analyzing the results of our machine learning models, we gained insights into their effectiveness in sentiment classification. We observed the accuracy and performance of various algorithms and vectorization techniques, enabling us to identify the models that achieved the highest accuracy and overall performance. LSTM and CNN, being more advanced models, aimed to capture complex patterns and dependencies in the text data, potentially resulting in improved sentiment classification. Monitoring the training history and metrics of the LSTM and CNN models provided valuable insights. We examined the learning progress, convergence behavior, and generalization capabilities of the models. Through the evaluation of performance metrics and convergence trends, we gained an understanding of the models' ability to learn from the data and make accurate predictions. Confusion matrices played a crucial role in assessing the models' predictions. They provided a detailed analysis of the models' classification performance, highlighting the distribution of correct and incorrect classifications for each sentiment category. This analysis allowed us to identify potential areas of improvement and fine-tune the models accordingly. In addition to confusion matrices, visualizations comparing the true values with the predicted values were employed to evaluate the models' performance. These visualizations provided a comprehensive overview of the models' classification accuracy and potential areas for improvement. They allowed us to assess the alignment between the models' predictions and the actual sentiment labels, enabling a deeper understanding of the models' strengths and weaknesses. Overall, the exploration of machine learning, LSTM, and CNN models for sentiment analysis and opinion mining aimed to develop effective tools for understanding public opinions. The results obtained from this project showcased the models' performance, convergence behavior, and their ability to accurately classify sentiments. These insights can be leveraged by businesses and organizations to gain a deeper understanding of the sentiments expressed towards their products or services, enabling them to make informed decisions and adapt their strategies accordingly.



Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits


Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits
DOWNLOAD

Author : Tarek Amr
language : en
Publisher:
Release Date : 2020-07-24

Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits written by Tarek Amr and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-24 with Computers categories.




Data Science Workshop Parkinson Classification And Prediction Using Machine Learning And Deep Learning With Python Gui


Data Science Workshop Parkinson Classification And Prediction Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-26

Data Science Workshop Parkinson Classification And Prediction Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-26 with Computers categories.


In this data science workshop focused on Parkinson's disease classification and prediction, we begin by exploring the dataset containing features relevant to the disease. We perform data exploration to understand the structure of the dataset, check for missing values, and gain insights into the distribution of features. Visualizations are used to analyze the distribution of features and their relationship with the target variable, which is whether an individual has Parkinson's disease or not. After data exploration, we preprocess the dataset to prepare it for machine learning models. This involves handling missing values, scaling numerical features, and encoding categorical variables if necessary. We ensure that the dataset is split into training and testing sets to evaluate model performance effectively. With the preprocessed dataset, we move on to the classification task. Using various machine learning algorithms such as Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), we train multiple models on the training data. To optimize the hyperparameters of these models, we utilize Grid Search, a technique to exhaustively search for the best combination of hyperparameters. For each machine learning model, we evaluate their performance on the test set using various metrics such as accuracy, precision, recall, and F1-score. These metrics help us understand the model's ability to correctly classify individuals with and without Parkinson's disease. Next, we delve into building an Artificial Neural Network (ANN) for Parkinson's disease prediction. The ANN architecture is designed with input, hidden, and output layers. We utilize the TensorFlow library to construct the neural network with appropriate activation functions, dropout layers, and optimizers. The ANN is trained on the preprocessed data for a fixed number of epochs, and we monitor its training and validation loss and accuracy to ensure proper training. After training the ANN, we evaluate its performance using the same metrics as the machine learning models, comparing its accuracy, precision, recall, and F1-score against the previous models. This comparison helps us understand the benefits and limitations of using deep learning for Parkinson's disease prediction. To provide a user-friendly interface for the classification and prediction process, we design a Python GUI using PyQt. The GUI allows users to load their own dataset, choose data preprocessing options, select machine learning classifiers, train models, and predict using the ANN. The GUI provides visualizations of the data distribution, model performance, and prediction results for better understanding and decision-making. In the GUI, users have the option to choose different data preprocessing techniques, such as raw data, normalization, and standardization, to observe how these techniques impact model performance. The choice of classifiers is also available, allowing users to compare different models and select the one that suits their needs best. Throughout the workshop, we emphasize the importance of proper evaluation metrics and the significance of choosing the right model for Parkinson's disease classification and prediction. We highlight the strengths and weaknesses of each model, enabling users to make informed decisions based on their specific requirements and data characteristics. Overall, this data science workshop provides participants with a comprehensive understanding of Parkinson's disease classification and prediction using machine learning and deep learning techniques. Participants gain hands-on experience in data preprocessing, model training, hyperparameter tuning, and designing a user-friendly GUI for efficient and effective data analysis and prediction.