Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python

DOWNLOAD
Download Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-11
Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-11 with Computers categories.
Welcome to "Machine Learning for Concrete Compressive Strength Analysis and Prediction with Python." In this book, we will explore the fascinating field of applying machine learning techniques to analyze and predict the compressive strength of concrete. First, we will dive into the dataset, which includes various features related to concrete mix proportions, age, and other influential factors. We will explore the dataset's structure, dimensions, and feature types, ensuring that we have a solid understanding of the data we are working with. Then, we will focus on data exploration and visualization. We will utilize histograms, box plots, and scatter plots to gain insights into the distribution of features and their relationships with the target variable, enabling us to uncover valuable patterns and trends within the dataset. Before delving into machine learning algorithms, we must preprocess the data. We will handle missing values, encode categorical variables, and scale numerical features to ensure that our data is in the optimal format for training and testing our models. Then, we will explore popular algorithms such as Linear Regression, Decision Trees, Random Forests, Support Vector, Naïve Bayes, K-Nearest Neighbors, Adaboost, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, Catboost, and Multi-Layer Perceptron regression algorithms and use them to predict the concrete compressive strength accurately. We will evaluate and compare the performance of these models using regression metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2) score. Then, we will explore the exciting world of unsupervised learning by applying K-means clustering. This technique allows us to identify patterns within the data and group similar instances together, leading to valuable insights into the characteristics of different concrete samples. To determine the optimal number of clusters within the data, we will introduce evaluation methods such as the elbow method. We will then visualize the clusters using scatter plots or other appropriate techniques, allowing us to gain a deeper understanding of their distribution and distinct groups. Next, we will we employed various machine learning models to predict the clusters in the dataset. These models included Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Adaboost, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGBM), Catboost, and Multi-Layer Perceptron (MLP). The metrics used are Accuracy: it measures the proportion of correctly classified instances out of the total number of instances. It provides an overall assessment of how well the model predicts the correct cluster memberships.; Recall: it, also known as sensitivity or true positive rate, measures the ability of the model to correctly identify instances belonging to a particular cluster. It is the ratio of true positives to the sum of true positives and false negatives.; Precision: it measures the ability of the model to correctly identify instances belonging to a specific cluster, without including any false positives. It is the ratio of true positives to the sum of true positives and false positives.; F1-score: it is the harmonic mean of precision and recall, providing a balanced measure of model performance. It is useful when the dataset is imbalanced, as it considers both false positives and false negatives.; Macro average (macro avg): it calculates the average performance of the model across all clusters by simply averaging the metric values for each cluster. It treats all clusters equally, regardless of their sizes.; and Weighted average (weighted avg): it calculates the average performance of the model across all clusters, taking into account the size of each cluster. It is calculated by weighting each cluster's metric value by its support, which is the number of instances in that cluster. These metrics help evaluate the model's ability to predict cluster memberships accurately. Accuracy measures the overall correctness of the predictions, while recall and precision focus on the model's performance in correctly assigning instances to specific clusters. Macro average and weighted average provide a summary of model performance across all clusters, considering both individual cluster performance and cluster sizes. By analyzing these metrics, we can assess the model's effectiveness in predicting clusters and compare the performance of different machine learning models. By the end of this book, you will have gained valuable insights into how machine learning can be leveraged to analyze and predict the compressive strength of concrete. Get ready to embark on an exciting journey into the world of concrete analysis and prediction with machine learning!
Four Projects Prediction And Forecasting Using Machine Learning With Python
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-05-25
Four Projects Prediction And Forecasting Using Machine Learning With Python written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-25 with Computers categories.
PROJECT 1: GOLD PRICE ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON The challenge of this project is to accurately predict the future adjusted closing price of Gold ETF across a given period of time in the future. The problem is a regression problem, because the output value which is the adjusted closing price in this project is continuous value. Data for this study is collected from November 18th 2011 to January 1st 2019 from various sources. The data has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. The dataset has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. To perform forecasting based on regression adjusted closing price of gold, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. The machine learning models used predict gold daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model. PROJECT 2: WIND POWER ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON Renewable energy remains one of the most important topics for a sustainable future. Wind, being a perennial source of power, could be utilized to satisfy our power requirements. With the rise of wind farms, wind power forecasting would prove to be quite useful. It contains various weather, turbine and rotor features. Data has been recorded from January 2018 till March 2020. Readings have been recorded at a 10-minute interval. A longterm wind forecasting technique is thus required. The attributes in the dataset are as follows: ActivePower, AmbientTemperature, BearingShaftTemperature, Blade1PitchAngle, Blade2PitchAngle, Blade3PitchAngle, ControlBoxTemperature, GearboxBearingTemperature, GearboxOilTemperature, GeneratorRP, GeneratorWinding1Temperature, GeneratorWinding2Temperature, HubTemperature, MainBoxTemperature, NacellePosition, ReactivePower, RotorRPM, TurbineStatus, WTG, WindDirection, and WindSpeed. To perform forecasting based on regression active power, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict categorized active power as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: MACHINE LEARNING FOR CONCRETE COMPRESSIVE STRENGTH ANALYSIS AND PREDICTION WITH PYTHON Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The actual concrete compressive strength (MPa) for a given mixture under a specific age (days) was determined from laboratory. This dataset is in raw form (not scaled). There are 1030 observations, 9 attributes, 8 quantitative input variables, and 1 quantitative output variable in dataset. The attributes in the dataset are as follows: Cement (component 1); Blast Furnace Slag (component 2); Fly Ash (component 3); Water (component 4); Superplasticizer (component 5); Coarse Aggregate; Fine Aggregate (component 7); Age; and Concrete compressive strength. To perform regression on concrete compressive strength, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON The dataset used in this project is from Walmart which is a renowned retail corporation that operates a chain of hypermarkets. Walmart has provided a data combining of 45 stores including store information and monthly sales. The data is provided on weekly basis. Walmart tries to find the impact of holidays on the sales of store. For which it has included four holidays’ weeks into the dataset which are Christmas, Thanksgiving, Super bowl, Labor Day. In this project, you are going to analyze, forecast weekly sales, perform clustering, and predict the resulting clusters. The dataset covers sales from 2010-02-05 to 2012-11-01. Following are the attributes in the dataset: Store - the store number; Date - the week of sales; Weekly_Sales - sales for the given store; Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week; Temperature - Temperature on the day of sale; Fuel_Price - Cost of fuel in the region; CPI – Prevailing consumer price index; and Unemployment - Prevailing unemployment rate. To perform regression on weekly sales, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Google Stock Price Time Series Analysis Visualization Forecasting And Prediction Using Machine Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-11
Google Stock Price Time Series Analysis Visualization Forecasting And Prediction Using Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-11 with Computers categories.
Google, officially known as Alphabet Inc., is an American multinational technology company. It was founded in September 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University. Initially, it started as a research project to develop a search engine, but it rapidly grew into one of the largest and most influential technology companies in the world. Google is primarily known for its internet-related services and products, with its search engine being its most well-known offering. It revolutionized the way people access information by providing a fast and efficient search engine that delivers highly relevant results. Over the years, Google expanded its portfolio to include a wide range of products and services, including Google Maps, Google Drive, Gmail, Google Docs, Google Photos, Google Chrome, YouTube, and many more. In addition to its internet services, Google ventured into hardware with products like the Google Pixel smartphones, Google Home smart speakers, and Google Nest smart home devices. It also developed its own operating system called Android, which has become the most widely used mobile operating system globally. Google's success can be attributed to its ability to monetize its services through online advertising. The company introduced Google AdWords, a highly successful online advertising program that enables businesses to display ads on Google's search engine and other websites through its AdSense program. Advertising contributes significantly to Google's revenue, along with other sources such as cloud services, app sales, and licensing fees. The dataset used in this project starts from 19-Aug-2004 and is updated till 11-Oct-2021. It contains 4317 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. You can download the dataset from https://viviansiahaan.blogspot.com/2023/06/google-stock-price-time-series-analysis.html. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, you will learn how to perform forecasting based on regression on Adj Close price of Google stock price, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The machine learning models used to predict Google daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.
Time Series Analysis Forecasting Stock Price Using Machine Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-02
Time Series Analysis Forecasting Stock Price Using Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-02 with Computers categories.
Stock trading and financial instrument markets offer significant opportunities for wealth creation. The ability to predict stock price movements has long intrigued researchers and investors alike. While some theories, like the Efficient Market Hypothesis, suggest that consistently beating the market is nearly impossible, others contest this viewpoint. Stock price prediction involves forecasting the future value of a given stock. In this project, we focus on the S&P 500 Index, which consists of 500 stocks from various sectors of the US economy and serves as a key indicator of US equities. To tackle this task, we utilize the Yahoo stock price history dataset, which contains 1825 rows and 7 columns including Date, High, Low, Open, Close, Volume, and Adj Close. To enhance our predictions, we incorporate technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, for the forecasting task, we employ various regression algorithms including Linear Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression, Naïve Bayes Regression, K-Nearest Neighbor Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, MLP Regression, Lasso Regression, and Ridge Regression. These models aim to predict the future Adj Close price of the stock based on historical data. In addition to stock price prediction, we also delve into predicting stock daily returns using machine learning models. We utilize K-Nearest Neighbor Classifier, Random Forest Classifier, Naive Bayes Classifier, Logistic Regression Classifier, Decision Tree Classifier, Support Vector Machine Classifier, LGBM Classifier, Gradient Boosting Classifier, XGB Classifier, MLP Classifier, and Extra Trees Classifier. These models are trained to predict the direction of daily stock returns (positive or negative) based on various features and technical indicators. To assess the performance of these machine learning models, we evaluate several important metrics. Accuracy measures the overall correctness of the predictions, while recall quantifies the ability to correctly identify positive cases (upward daily returns). Precision evaluates the precision of positive predictions, and the F1 score provides a balanced measure of precision and recall. Additionally, we consider macro average, which calculates the average metric value across all classes, and weighted average, which provides a balanced representation considering class imbalances. To enhance the user experience and facilitate data exploration, we develop a graphical user interface (GUI). The GUI is built using PyQt and offers an interactive platform for users to visualize and interact with the data. It provides features such as plotting boundary decisions, visualizing feature distributions and importance, comparing predicted values with true values, displaying confusion matrices, learning curves, model performance, and scalability analysis. The GUI allows users to customize the analysis by selecting different models, time periods, or variables of interest, making it accessible and user-friendly for individuals without extensive programming knowledge. The combination of exploring the dataset, forecasting stock prices, predicting daily returns, and developing a GUI creates a comprehensive framework for analyzing and understanding stock market trends. By leveraging machine learning algorithms and evaluating performance metrics, we gain valuable insights into the accuracy and effectiveness of our predictions. The GUI further enhances the accessibility and usability of the analysis, enabling users to make data-driven decisions and explore the stock market with ease.
Proceedings Of International Conference On Artificial Intelligence And Networks
DOWNLOAD
Author : Bal Virdee
language : en
Publisher: Springer Nature
Release Date : 2025-08-02
Proceedings Of International Conference On Artificial Intelligence And Networks written by Bal Virdee and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-02 with Computers categories.
This book presents selected papers from International Conference on Artificial Intelligence and Networks (ICAIN 2024), held on 24 – 25 September 2024, in Guru Tegh Bahadur Institute of Technology (GTBIT), GGSIPU, Delhi, India. The topics covered in the book are deep learning, machine learning, natural language processing, data science and analytics, cybersecurity and privacy, cloud computing, and wireless and mobile networks.
Computational Modelling Of Concrete And Concrete Structures
DOWNLOAD
Author : Günther Meschke
language : en
Publisher: CRC Press
Release Date : 2022-05-22
Computational Modelling Of Concrete And Concrete Structures written by Günther Meschke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-22 with Technology & Engineering categories.
Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.
Hands On Simulation Modeling With Python
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-11-30
Hands On Simulation Modeling With Python written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-30 with Technology & Engineering categories.
Learn to construct state-of-the-art simulation models with Python and enhance your simulation modelling skills, as well as create and analyze digital prototypes of physical models with ease Key FeaturesUnderstand various statistical and physical simulations to improve systems using PythonLearn to create the numerical prototype of a real model using hands-on examplesEvaluate performance and output results based on how the prototype would work in the real worldBook Description Simulation modelling is an exploration method that aims to imitate physical systems in a virtual environment and retrieve useful statistical inferences from it. The ability to analyze the model as it runs sets simulation modelling apart from other methods used in conventional analyses. This book is your comprehensive and hands-on guide to understanding various computational statistical simulations using Python. The book begins by helping you get familiarized with the fundamental concepts of simulation modelling, that'll enable you to understand the various methods and techniques needed to explore complex topics. Data scientists working with simulation models will be able to put their knowledge to work with this practical guide. As you advance, you'll dive deep into numerical simulation algorithms, including an overview of relevant applications, with the help of real-world use cases and practical examples. You'll also find out how to use Python to develop simulation models and how to use several Python packages. Finally, you'll get to grips with various numerical simulation algorithms and concepts, such as Markov Decision Processes, Monte Carlo methods, and bootstrapping techniques. By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges. What you will learnGet to grips with the concept of randomness and the data generation processDelve into resampling methodsDiscover how to work with Monte Carlo simulationsUtilize simulations to improve or optimize systemsFind out how to run efficient simulations to analyze real-world systemsUnderstand how to simulate random walks using Markov chainsWho this book is for This book is for data scientists, simulation engineers, and anyone who is already familiar with the basic computational methods and wants to implement various simulation techniques such as Monte-Carlo methods and statistical simulation using Python.
Machine Learning For Civil And Environmental Engineers
DOWNLOAD
Author : M. Z. Naser
language : en
Publisher: John Wiley & Sons
Release Date : 2023-07-17
Machine Learning For Civil And Environmental Engineers written by M. Z. Naser and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-17 with Technology & Engineering categories.
Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain. Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers. The approaches presented range from simplified to advanced methods, incorporating coding-based and coding-free techniques. Professional engineers and engineering students will find value in the step-by-step examples that are accompanied by sample databases and codes for readers to practice with. Written by a highly qualified professional with significant experience in the field, Machine Learning includes valuable information on: The current state of machine learning and causality in civil and environmental engineering as viewed through a scientometrics analysis, plus a historical perspective Supervised vs. unsupervised learning for regression, classification, and clustering problems Explainable and causal methods for practical engineering problems Database development, outlining how an engineer can effectively collect and verify appropriate data to be used in machine intelligence analysis A framework for machine learning adoption and application, covering key questions commonly faced by practitioners This textbook is a must-have reference for undergraduate/graduate students to learn concepts on the use of machine learning, for scientists/researchers to learn how to integrate machine learning into civil and environmental engineering, and for design/engineering professionals as a reference guide for undertaking MI design, simulation, and optimization for infrastructure.
Innovation In Smart And Sustainable Infrastructure Volume 2
DOWNLOAD
Author : Dhruvesh Patel
language : en
Publisher: Springer Nature
Release Date : 2024-08-01
Innovation In Smart And Sustainable Infrastructure Volume 2 written by Dhruvesh Patel and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-01 with Technology & Engineering categories.
This book presents select peer-reviewed proceedings of the International Conference on Innovation in Smart and Sustainable Infrastructure (ISSI2022). The contents focus on smart infrastructure and cites, construction and infrastructure project management, application of building information modelling, sustainable materials and methods for road construction, smart technologies, applications and services for transportation systems, remote sensing and GIS for water resources management, climate change and prediction analysis, model simulation and analysis, seismic engineering and soil dynamics, innovation geo-materials and geosynthetics, computational geotechnics, emerging technologies in smart mobility and transport planning, among others. This volume will be useful for researchers and professionals in civil engineering and allied fields.
Discovery Science
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: Springer Nature
Release Date : 2023-10-07
Discovery Science written by Albert Bifet and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-07 with Computers categories.
This book constitutes the proceedings of the 26th International Conference on Discovery Science, DS 2023, which took place in Porto, Portugal, in October 2023. The 37 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 133 submissions. They were organized in topical sections as follows: Machine learning methods and applications; natural language processing and social media analysis; interpretability and explainability in AI; data analysis and optimization; fairness, privacy and security in AI; control and spatio-temporal modeling; graph theory and network analysis; time series and forecasting; healthcare and biological data analysis; anomaly, outlier and novelty detection.