Learn Keras For Deep Neural Networks

DOWNLOAD
Download Learn Keras For Deep Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learn Keras For Deep Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Learn Keras For Deep Neural Networks
DOWNLOAD
Author : Jojo Moolayil
language : en
Publisher: Apress
Release Date : 2018-12-07
Learn Keras For Deep Neural Networks written by Jojo Moolayil and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with Computers categories.
Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras. The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You’ll tackle one use case for regression and another for classification leveraging popular Kaggle datasets. Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you’ll further hone your skills in deep learning and cover areas of active development and research in deep learning. At the end of Learn Keras for Deep Neural Networks, you will have a thorough understanding of deep learning principles and have practical hands-on experience in developing enterprise-grade deep learning solutions in Keras. What You’ll Learn Master fast-paced practical deep learning concepts with math- and programming-friendly abstractions. Design, develop, train, validate, and deploy deep neural networks using the Keras framework Use best practices for debugging and validating deep learning models Deploy and integrate deep learning as a service into a larger software service or product Extend deep learning principles into other popular frameworks Who This Book Is For Software engineers and data engineers with basic programming skills in any language and who are keen on exploring deep learning for a career move or an enterprise project.
Keras Deep Learning Cookbook
DOWNLOAD
Author : Rajdeep Dua
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Keras Deep Learning Cookbook written by Rajdeep Dua and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Leverage the power of deep learning and Keras to develop smarter and more efficient data models Key FeaturesUnderstand different neural networks and their implementation using KerasExplore recipes for training and fine-tuning your neural network modelsPut your deep learning knowledge to practice with real-world use-cases, tips, and tricksBook Description Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning What you will learnInstall and configure Keras in TensorFlowMaster neural network programming using the Keras library Understand the different Keras layers Use Keras to implement simple feed-forward neural networks, CNNs and RNNsWork with various datasets and models used for image and text classificationDevelop text summarization and reinforcement learning models using KerasWho this book is for Keras Deep Learning Cookbook is for you if you are a data scientist or machine learning expert who wants to find practical solutions to common problems encountered while training deep learning models. A basic understanding of Python and some experience in machine learning and neural networks is required for this book.
Deep Learning
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-08-14
Deep Learning written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-14 with Computers categories.
Deep Learning - 2 BOOK BUNDLE!! Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Convolutional Neural Networks in Python This book covers the basics behind Convolutional Neural Networks by introducing you to this complex world of deep learning and artificial neural networks in a simple and easy to understand way. It is perfect for any beginner out there looking forward to learning more about this machine learning field. This book is all about how to use convolutional neural networks for various image, object and other common classification problems in Python. Here, we also take a deeper look into various Keras layer used for building CNNs we take a look at different activation functions and much more, which will eventually lead you to creating highly accurate models able of performing great task results on various image classification, object classification and other problems. Therefore, at the end of the book, you will have a better insight into this world, thus you will be more than prepared to deal with more complex and challenging tasks on your own. Here Is a Preview of What You’ll Learn In This Book… Convolutional neural networks structure How convolutional neural networks actually work Convolutional neural networks applications The importance of convolution operator Different convolutional neural networks layers and their importance Arrangement of spatial parameters How and when to use stride and zero-padding Method of parameter sharing Matrix multiplication and its importance Pooling and dense layers Introducing non-linearity relu activation function How to train your convolutional neural network models using backpropagation How and why to apply dropout CNN model training process How to build a convolutional neural network Generating predictions and calculating loss functions How to train and evaluate your MNIST classifier How to build a simple image classification CNN And much, much more! Get this book bundle NOW and SAVE money!
Hands On Deep Learning Architectures With Python
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30
Hands On Deep Learning Architectures With Python written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.
Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book
Deep Learning With Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher:
Release Date : 2017-04-26
Deep Learning With Keras written by Antonio Gulli and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-26 with Computers categories.
Get to grips with the basics of Keras to implement fast and efficient deep-learning modelsAbout This Book* Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games* See how various deep-learning models and practical use-cases can be implemented using Keras* A practical, hands-on guide with real-world examples to give you a strong foundation in KerasWho This Book Is ForIf you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.What You Will Learn* Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm* Fine-tune a neural network to improve the quality of results* Use deep learning for image and audio processing* Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases* Identify problems for which Recurrent Neural Network (RNN) solutions are suitable* Explore the process required to implement Autoencoders* Evolve a deep neural network using reinforcement learningIn DetailThis book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks.Style and approachThis book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.
Deep Learning With Keras
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-07-07
Deep Learning With Keras written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-07 with Computers categories.
Deep Learning with Keras This book will introduce you to various supervised and unsupervised deep learning algorithms like the multilayer perceptron, linear regression and other more advanced deep convolutional and recurrent neural networks. You will also learn about image processing, handwritten recognition, object recognition and much more. Furthermore, you will get familiar with recurrent neural networks like LSTM and GAN as you explore processing sequence data like time series, text, and audio. The book will definitely be your best companion on this great deep learning journey with Keras introducing you to the basics you need to know in order to take next steps and learn more advanced deep neural networks. Here Is a Preview of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Get this book NOW and learn more about Deep Learning with Keras!
R Deep Learning Essentials
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-24
R Deep Learning Essentials written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-24 with Computers categories.
Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.
Advanced Deep Learning With Tensorflow 2 And Keras Second Edition
DOWNLOAD
Author : ROWEL. ATIENZA
language : en
Publisher:
Release Date : 2020-02-28
Advanced Deep Learning With Tensorflow 2 And Keras Second Edition written by ROWEL. ATIENZA and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with categories.
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-05
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.