[PDF] Lectures On Random Interfaces - eBooks Review

Lectures On Random Interfaces


Lectures On Random Interfaces
DOWNLOAD

Download Lectures On Random Interfaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Random Interfaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lectures On Random Interfaces


Lectures On Random Interfaces
DOWNLOAD
Author : Tadahisa Funaki
language : en
Publisher: Springer
Release Date : 2016-12-27

Lectures On Random Interfaces written by Tadahisa Funaki and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-27 with Mathematics categories.


Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book.Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers.Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit.A sharp interface limit for the Allen–Cahn equation, that is, a reaction–diffusion equation with bistable reaction term, leads to a mean curvature flow for the interfaces. Its stochastic perturbation, sometimes called a time-dependent Ginzburg–Landau model, stochastic quantization, or dynamic P(φ)-model, is considered. Brief introductions to Brownian motions, martingales, and stochastic integrals are given in an infinite dimensional setting. The regularity property of solutions of stochastic PDEs (SPDEs) of a parabolic type with additive noises is also discussed.The Kardar–Parisi–Zhang (KPZ) equation , which describes a growing interface with fluctuation, recently has attracted much attention. This is an ill-posed SPDE and requires a renormalization. Especially its invariant measures are studied.



Lectures On Probability Theory And Statistics


Lectures On Probability Theory And Statistics
DOWNLOAD
Author : Amir Dembo
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-03

Lectures On Probability Theory And Statistics written by Amir Dembo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-03 with Mathematics categories.


This volume contains two of the three lectures that were given at the 33rd Probability Summer School in Saint-Flour (July 6-23, 2003). Amir Dembo’s course is devoted to recent studies of the fractal nature of random sets, focusing on some fine properties of the sample path of random walk and Brownian motion. In particular, the cover time for Markov chains, the dimension of discrete limsup random fractals, the multi-scale truncated second moment and the Ciesielski-Taylor identities are explored. Tadahisa Funaki’s course reviews recent developments of the mathematical theory on stochastic interface models, mostly on the so-called \nabla \varphi interface model. The results are formulated as classical limit theorems in probability theory, and the text serves with good applications of basic probability techniques.



The Best Interface Is No Interface


The Best Interface Is No Interface
DOWNLOAD
Author : Golden Krishna
language : en
Publisher: New Riders
Release Date : 2015-01-31

The Best Interface Is No Interface written by Golden Krishna and has been published by New Riders this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-31 with Computers categories.


Our love affair with the digital interface is out of control. We’ve embraced it in the boardroom, the bedroom, and the bathroom. Screens have taken over our lives. Most people spend over eight hours a day staring at a screen, and some “technological innovators” are hoping to grab even more of your eyeball time. You have screens in your pocket, in your car, on your appliances, and maybe even on your face. Average smartphone users check their phones 150 times a day, responding to the addictive buzz of Facebook or emails or Twitter. Are you sick? There’s an app for that! Need to pray? There’s an app for that! Dead? Well, there’s an app for that, too! And most apps are intentionally addictive distractions that end up taking our attention away from things like family, friends, sleep, and oncoming traffic. There’s a better way. In this book, innovator Golden Krishna challenges our world of nagging, screen-based bondage, and shows how we can build a technologically advanced world without digital interfaces. In his insightful, raw, and often hilarious criticism, Golden reveals fascinating ways to think beyond screens using three principles that lead to more meaningful innovation. Whether you’re working in technology, or just wary of a gadget-filled future, you’ll be enlighted and entertained while discovering that the best interface is no interface.



Stochastic Partial Differential Equations And Related Fields


Stochastic Partial Differential Equations And Related Fields
DOWNLOAD
Author : Andreas Eberle
language : en
Publisher: Springer
Release Date : 2018-07-03

Stochastic Partial Differential Equations And Related Fields written by Andreas Eberle and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-03 with Mathematics categories.


This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.



Lectures On Mathematical Statistical Mechanics


Lectures On Mathematical Statistical Mechanics
DOWNLOAD
Author : Stefan Adams
language : en
Publisher:
Release Date : 2006

Lectures On Mathematical Statistical Mechanics written by Stefan Adams and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Statistical mechanics categories.




Convexity From The Geometric Point Of View


Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14

Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.


This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.



Probability And Statistical Physics In Two And More Dimensions


Probability And Statistical Physics In Two And More Dimensions
DOWNLOAD
Author : Clay Mathematics Institute. Summer School
language : en
Publisher: American Mathematical Soc.
Release Date : 2012

Probability And Statistical Physics In Two And More Dimensions written by Clay Mathematics Institute. Summer School and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


This volume is a collection of lecture notes for six of the ten courses given in Buzios, Brazil by prominent probabilists at the 2010 Clay Mathematics Institute Summer School, ``Probability and Statistical Physics in Two and More Dimensions'' and at the XIV Brazilian School of Probability. In the past ten to fifteen years, various areas of probability theory related to statistical physics, disordered systems and combinatorics have undergone intensive development. A number of these developments deal with two-dimensional random structures at their critical points, and provide new tools and ways of coping with at least some of the limitations of Conformal Field Theory that had been so successfully developed in the theoretical physics community to understand phase transitions of two-dimensional systems. Included in this selection are detailed accounts of all three foundational courses presented at the Clay school--Schramm-Loewner Evolution and other Conformally Invariant Objects, Noise Sensitivity and Percolation, Scaling Limits of Random Trees and Planar Maps--together with contributions on Fractal and Multifractal properties of SLE and Conformal Invariance of Lattice Models. Finally, the volume concludes with extended articles based on the courses on Random Polymers and Self-Avoiding Walks given at the Brazilian School of Probability during the final week of the school. Together, these notes provide a panoramic, state-of-the-art view of probability theory areas related to statistical physics, disordered systems and combinatorics. Like the lectures themselves, they are oriented towards advanced students and postdocs, but experts should also find much of interest.



Stochastic Dynamics Out Of Equilibrium


Stochastic Dynamics Out Of Equilibrium
DOWNLOAD
Author : Giambattista Giacomin
language : en
Publisher: Springer
Release Date : 2019-06-30

Stochastic Dynamics Out Of Equilibrium written by Giambattista Giacomin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-30 with Mathematics categories.


Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.



Lectures On Monte Carlo Methods


Lectures On Monte Carlo Methods
DOWNLOAD
Author : Neal Noah Madras
language : en
Publisher: American Mathematical Soc.
Release Date : 2002

Lectures On Monte Carlo Methods written by Neal Noah Madras and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the ``curse of dimensionality'', which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathematical models that arise in diverse areas of application. The book is based on lectures in a graduate course given by the author. It examines theoretical properties of Monte Carlo methods as well as practical issues concerning their computer implementation and statistical analysis. The only formal prerequisite is an undergraduate course in probability. The book is intended to be accessible to students from a wide range of scientific backgrounds. Rather than being a detailed treatise, it covers the key topics of Monte Carlo methods to the depth necessary for a researcher to design, implement, and analyze a full Monte Carlo study of a mathematical or scientific problem. The ideas are illustrated with diverse running examples. There are exercises sprinkled throughout the text. The topics covered include computer generation of random variables, techniques and examples for variance reduction of Monte Carlo estimates, Markov chain Monte Carlo, and statistical analysis of Monte Carlo output.



Lectures On Probability Theory And Statistics


Lectures On Probability Theory And Statistics
DOWNLOAD
Author : Wendelin Werner
language : en
Publisher: Springer Science & Business Media
Release Date :

Lectures On Probability Theory And Statistics written by Wendelin Werner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.