[PDF] Linear And Generalized Linear Mixed Models And Their Applications - eBooks Review

Linear And Generalized Linear Mixed Models And Their Applications


Linear And Generalized Linear Mixed Models And Their Applications
DOWNLOAD

Download Linear And Generalized Linear Mixed Models And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear And Generalized Linear Mixed Models And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Linear And Generalized Linear Mixed Models And Their Applications


Linear And Generalized Linear Mixed Models And Their Applications
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-30

Linear And Generalized Linear Mixed Models And Their Applications written by Jiming Jiang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-30 with Mathematics categories.


Over the past decade there has been an explosion of developments in mixed e?ects models and their applications. This book concentrates on two major classes of mixed e?ects models, linear mixed models and generalized linear mixed models, with the intention of o?ering an up-to-date account of theory and methods in the analysis of these models as well as their applications in various ?elds. The ?rst two chapters are devoted to linear mixed models. We classify l- ear mixed models as Gaussian (linear) mixed models and non-Gaussian linear mixed models. There have been extensive studies in estimation in Gaussian mixed models as well as tests and con?dence intervals. On the other hand, the literature on non-Gaussian linear mixed models is much less extensive, partially because of the di?culties in inference about these models. However, non-Gaussian linear mixed models are important because, in practice, one is never certain that normality holds. This book o?ers a systematic approach to inference about non-Gaussian linear mixed models. In particular, it has included recently developed methods, such as partially observed information, iterative weighted least squares, and jackknife in the context of mixed models. Other new methods introduced in this book include goodness-of-?t tests, p- diction intervals, and mixed model selection. These are, of course, in addition to traditional topics such as maximum likelihood and restricted maximum likelihood in Gaussian mixed models.



Linear And Generalized Linear Mixed Models And Their Applications


Linear And Generalized Linear Mixed Models And Their Applications
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: Springer
Release Date : 2008-11-01

Linear And Generalized Linear Mixed Models And Their Applications written by Jiming Jiang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-01 with Mathematics categories.


This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Walter W. Stroup
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Generalized Linear Mixed Models written by Walter W. Stroup and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.



Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii


Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher:
Release Date : 2021

Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii written by Jiming Jiang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Now in its second edition, this book covers two major classes of mixed effects models-linear mixed models and generalized linear mixed models-and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics. This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra.



Correlated Data Analysis Modeling Analytics And Applications


Correlated Data Analysis Modeling Analytics And Applications
DOWNLOAD
Author : Peter X. -K. Song
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-30

Correlated Data Analysis Modeling Analytics And Applications written by Peter X. -K. Song and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-30 with Mathematics categories.


This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.



Generalized Linear Mixed Models With Applications In Agriculture And Biology


Generalized Linear Mixed Models With Applications In Agriculture And Biology
DOWNLOAD
Author : Josafhat Salinas Ruíz
language : en
Publisher: Springer Nature
Release Date : 2023-08-16

Generalized Linear Mixed Models With Applications In Agriculture And Biology written by Josafhat Salinas Ruíz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-16 with Science categories.


This open access book offers an introduction to mixed generalized linear models with applications to the biological sciences, basically approached from an applications perspective, without neglecting the rigor of the theory. For this reason, the theory that supports each of the studied methods is addressed and later - through examples - its application is illustrated. In addition, some of the assumptions and shortcomings of linear statistical models in general are also discussed. An alternative to analyse non-normal distributed response variables is the use of generalized linear models (GLM) to describe the response data with an exponential family distribution that perfectly fits the real response. Extending this idea to models with random effects allows the use of Generalized Linear Mixed Models (GLMMs). The use of these complex models was not computationally feasible until the recent past, when computational advances and improvements to statistical analysis programs allowed users to easily, quickly, and accurately apply GLMM to data sets. GLMMs have attracted considerable attention in recent years. The word "Generalized" refers to non-normal distributions for the response variable and the word "Mixed" refers to random effects, in addition to the fixed effects typical of analysis of variance (or regression). With the development of modern statistical packages such as Statistical Analysis System (SAS), R, ASReml, among others, a wide variety of statistical analyzes are available to a wider audience. However, to be able to handle and master more sophisticated models requires proper training and great responsibility on the part of the practitioner to understand how these advanced tools work. GMLM is an analysis methodology used in agriculture and biology that can accommodate complex correlation structures and types of response variables.



Analysis Of Generalized Linear Mixed Models In The Agricultural And Natural Resources Sciences


Analysis Of Generalized Linear Mixed Models In The Agricultural And Natural Resources Sciences
DOWNLOAD
Author : Edward E. Gbur
language : en
Publisher: John Wiley & Sons
Release Date : 2020-01-22

Analysis Of Generalized Linear Mixed Models In The Agricultural And Natural Resources Sciences written by Edward E. Gbur and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-22 with Technology & Engineering categories.


Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences provides readers with an understanding and appreciation for the design and analysis of mixed models for non-normally distributed data. It is the only publication of its kind directed specifically toward the agricultural and natural resources sciences audience. Readers will especially benefit from the numerous worked examples based on actual experimental data and the discussion of pitfalls associated with incorrect analyses.



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: IMS
Release Date : 2003

Generalized Linear Mixed Models written by Charles E. McCulloch and has been published by IMS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models



The Sage Handbook Of Multilevel Modeling


The Sage Handbook Of Multilevel Modeling
DOWNLOAD
Author : Marc A. Scott
language : en
Publisher: SAGE
Release Date : 2013-08-31

The Sage Handbook Of Multilevel Modeling written by Marc A. Scott and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-31 with Reference categories.


In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.



Asymptotic Analysis Of Mixed Effects Models


Asymptotic Analysis Of Mixed Effects Models
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: CRC Press
Release Date : 2017-09-19

Asymptotic Analysis Of Mixed Effects Models written by Jiming Jiang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Mathematics categories.


Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.